Implementation of screened hybrid density functional for periodic systems with numerical atomic orbitals: basis function fitting and integral screening.

We present an efficient O(N) implementation of screened hybrid density functional for periodic systems with numerical atomic orbitals (NAOs). NAOs of valence electrons are fitted with gaussian-type orbitals, which is convenient for the calculation of electron repulsion integrals and the construction of Hartree-Fock exchange matrix elements. All other parts of Hamiltonian matrix elements are constructed directly with NAOs. The strict locality of NAOs is adopted as an efficient two-electron integral screening technique to speed up calculations.

[1]  Leonard Kleinman,et al.  Efficacious Form for Model Pseudopotentials , 1982 .

[2]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[3]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[4]  Marco Häser,et al.  Improvements on the direct SCF method , 1989 .

[5]  Michael J. Frisch,et al.  A linear scaling method for Hartree–Fock exchange calculations of large molecules , 1996 .

[6]  R. Braunstein,et al.  Interband Transitions and Exciton Effects in Semiconductors , 1972 .

[7]  Eric Schwegler,et al.  Linear scaling computation of the Fock matrix. II. Rigorous bounds on exchange integrals and incremental Fock build , 1997 .

[8]  Christian Ochsenfeld,et al.  Multipole-based integral estimates for the rigorous description of distance dependence in two-electron integrals. , 2005, The Journal of chemical physics.

[9]  B. Delley An all‐electron numerical method for solving the local density functional for polyatomic molecules , 1990 .

[10]  Artur F Izmaylov,et al.  Influence of the exchange screening parameter on the performance of screened hybrid functionals. , 2006, The Journal of chemical physics.

[11]  Qingshi Zhu,et al.  Spin-unrestricted linear-scaling electronic structure theory and its application to magnetic carbon-doped boron nitride nanotubes. , 2005, The Journal of chemical physics.

[12]  David R. Bowler,et al.  Pseudo-atomic orbitals as basis sets for the O(N) DFT code CONQUEST , 2008 .

[13]  Taisuke Ozaki,et al.  Variationally optimized atomic orbitals for large-scale electronic structures , 2003 .

[14]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[15]  A. Szabó,et al.  Modern quantum chemistry : introduction to advanced electronic structure theory , 1982 .

[16]  Spin unrestricted linear scaling electronic structure theory , 2005 .

[17]  Qingshi Zhu,et al.  Linear-scaling density matrix perturbation treatment of electric fields in solids. , 2006, Physical review letters.

[18]  Yaochun Shen,et al.  Wavelength modulation spectra of GaAs and silicon , 1970 .

[19]  Joost VandeVondele,et al.  Accurate Hartree-Fock energy of extended systems using large Gaussian basis sets , 2009, 0908.1340.

[20]  Michael J Frisch,et al.  Efficient evaluation of short-range Hartree-Fock exchange in large molecules and periodic systems. , 2006, The Journal of chemical physics.

[21]  Zhenyu Li,et al.  Linear scaling electronic structure calculations with numerical atomic basis set , 2010 .

[22]  Joost VandeVondele,et al.  Ab initio molecular dynamics using hybrid density functionals. , 2008, The Journal of chemical physics.

[23]  Tang,et al.  Urbach tail of anatase TiO2. , 1995, Physical review. B, Condensed matter.

[24]  David Feller The role of databases in support of computational chemistry calculations , 1996 .

[25]  Thomas M Henderson,et al.  Screened hybrid density functionals for solid-state chemistry and physics. , 2009, Physical chemistry chemical physics : PCCP.

[26]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[27]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[28]  Christian Ochsenfeld,et al.  Linear and sublinear scaling formation of Hartree-Fock-type exchange matrices , 1998 .

[29]  J. Paier,et al.  Screened hybrid density functionals applied to solids. , 2006, The Journal of chemical physics.

[30]  Zhenyu Li,et al.  Implementation of exact exchange with numerical atomic orbitals. , 2010, The journal of physical chemistry. A.

[31]  M. Gell-Mann,et al.  Correlation Energy of an Electron Gas at High Density , 1957 .

[32]  Zhenyu Li,et al.  Linear scaling calculation of maximally localized Wannier functions with atomic basis set. , 2006, The Journal of chemical physics.

[33]  Martin Head-Gordon,et al.  A method for two-electron Gaussian integral and integral derivative evaluation using recurrence relations , 1988 .

[34]  Delhalle,et al.  Direct-space analysis of the Hartree-Fock energy bands and density of states for metallic extended systems. , 1987, Physical review. B, Condensed matter.

[35]  Qingshi Zhu,et al.  Linear scaling calculation of band edge states and doped semiconductors. , 2007, The Journal of chemical physics.

[36]  Matthias Scheffler,et al.  Ab initio molecular simulations with numeric atom-centered orbitals , 2009, Comput. Phys. Commun..

[37]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[38]  H. Monkhorst,et al.  Hartree-Fock density of states for extended systems , 1979 .

[39]  Weitao Yang,et al.  Localization and delocalization errors in density functional theory and implications for band-gap prediction. , 2007, Physical review letters.

[40]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[41]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[42]  Shigeru Obara,et al.  Efficient recursive computation of molecular integrals over Cartesian Gaussian functions , 1986 .

[43]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[44]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0111138.