Power compensated thin film calorimetry at fast heating rates
暂无分享,去创建一个
[1] J. Rodríguez-Viejo,et al. Size-dependent melting and supercooling of Ge nanoparticles embedded in a SiO2 thin film , 2007 .
[2] Andreas Wurm,et al. Advanced nonadiabatic ultrafast nanocalorimetry and superheating phenomenon in linear polymers , 2007 .
[3] J. Rodríguez-Viejo,et al. Design issues involved in the development of a membrane-based high-temperature nanocalorimeter , 2007 .
[4] R. Leonelli,et al. Damage evolution in low-energy ion implanted silicon , 2007 .
[5] Steve McCoy,et al. Flash-assist RTP for ultra-shallow junctions , 2006 .
[6] J. Rodríguez-Viejo,et al. Heat transfer in symmetric U-shaped microreactors for thin film calorimetry , 2006 .
[7] M. Merzlyakov. Method of rapid (100 000 K s−1) controlled cooling and heating of thin samples , 2006 .
[8] Anthony T. Fiory,et al. Rapid thermal processing for silicon nanoelectronics applications , 2005 .
[9] K. Jensen,et al. Sensitive power compensated scanning calorimeter for analysis of phase transformations in small samples , 2005 .
[10] C. Schick,et al. Scanning microcalorimetry at high cooling rate , 2003 .
[11] Leslie H. Allen,et al. The design and operation of a MEMS differential scanning nanocalorimeter for high-speed heat capacity measurements of ultrathin films , 2003 .
[12] Olson,et al. Discrete periodic melting point observations for nanostructure ensembles , 2000, Physical review letters.
[13] S. Tay,et al. Spectroscopic ellipsometry investigation of nickel silicide formation by rapid thermal process , 1998 .
[14] R. J. Shul,et al. Ultrahigh Si+ implant activation efficiency in GaN using a high-temperature rapid thermal process system , 1998 .
[15] G. Ramanath,et al. High‐speed (104 °C/s) scanning microcalorimetry with monolayer sensitivity (J/m2) , 1995 .
[16] S. K. Watson,et al. Thin film microcalorimeter for heat capacity measurements from 1.5 to 800 K , 1994 .