Power compensated thin film calorimetry at fast heating rates

[1]  J. Rodríguez-Viejo,et al.  Size-dependent melting and supercooling of Ge nanoparticles embedded in a SiO2 thin film , 2007 .

[2]  Andreas Wurm,et al.  Advanced nonadiabatic ultrafast nanocalorimetry and superheating phenomenon in linear polymers , 2007 .

[3]  J. Rodríguez-Viejo,et al.  Design issues involved in the development of a membrane-based high-temperature nanocalorimeter , 2007 .

[4]  R. Leonelli,et al.  Damage evolution in low-energy ion implanted silicon , 2007 .

[5]  Steve McCoy,et al.  Flash-assist RTP for ultra-shallow junctions , 2006 .

[6]  J. Rodríguez-Viejo,et al.  Heat transfer in symmetric U-shaped microreactors for thin film calorimetry , 2006 .

[7]  M. Merzlyakov Method of rapid (100 000 K s−1) controlled cooling and heating of thin samples , 2006 .

[8]  Anthony T. Fiory,et al.  Rapid thermal processing for silicon nanoelectronics applications , 2005 .

[9]  K. Jensen,et al.  Sensitive power compensated scanning calorimeter for analysis of phase transformations in small samples , 2005 .

[10]  C. Schick,et al.  Scanning microcalorimetry at high cooling rate , 2003 .

[11]  Leslie H. Allen,et al.  The design and operation of a MEMS differential scanning nanocalorimeter for high-speed heat capacity measurements of ultrathin films , 2003 .

[12]  Olson,et al.  Discrete periodic melting point observations for nanostructure ensembles , 2000, Physical review letters.

[13]  S. Tay,et al.  Spectroscopic ellipsometry investigation of nickel silicide formation by rapid thermal process , 1998 .

[14]  R. J. Shul,et al.  Ultrahigh Si+ implant activation efficiency in GaN using a high-temperature rapid thermal process system , 1998 .

[15]  G. Ramanath,et al.  High‐speed (104 °C/s) scanning microcalorimetry with monolayer sensitivity (J/m2) , 1995 .

[16]  S. K. Watson,et al.  Thin film microcalorimeter for heat capacity measurements from 1.5 to 800 K , 1994 .