Molecular active plasmonics: controlling plasmon resonances with molecular machines

The paper studies the molecular-level active control of localized surface plasmon resonances (LSPRs) of Au nanodisk arrays with molecular machines. Two types of molecular machines - azobenzene and rotaxane - have been demonstrated to enable the reversible tuning of the LSPRs via the controlled mechanical movements. Azobenzene molecules have the property of trans-cis photoisomerization and enable the photo-induced nematic (N)-isotropic (I) phase transition of the liquid crystals (LCs) that contain the molecules as dopant. The phase transition of the azobenzene-doped LCs causes the refractive-index difference of the LCs, resulting in the reversible peak shift of the LSPRs of the embedded Au nanodisks due to the sensitivity of the LSPRs to the disks' surroundings' refractive index. Au nanodisk array, coated with rotaxanes, switches its LSPRs reversibly when it is exposed to chemical oxidants and reductants alternatively. The correlation between the peak shift of the LSPRs and the chemically driven mechanical movement of rotaxanes is supported by control experiments and a time-dependent density functional theory (TDDFT)-based, microscopic model.

[1]  Nader Engheta,et al.  Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials , 2007, Science.

[2]  Richard F. Haglund,et al.  Modulated optical transmission of subwavelength hole arrays in metal-VO2 films , 2006 .

[3]  M E Abdelsalam,et al.  Strong coupling between localized plasmons and organic excitons in metal nanovoids. , 2006, Physical review letters.

[4]  Wayne Dickson,et al.  Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies. , 2007, Nano letters.

[5]  N. Zheludev,et al.  Active plasmonics: Controlling signals in Au/Ga waveguide using nanoscale structural transformations , 2003, cond-mat/0310530.

[6]  Yuebing Zheng,et al.  Chemically Tuning the Localized Surface Plasmon Resonances of Gold Nanostructure Arrays , 2009 .

[7]  George Chumanov,et al.  WO3 Sol–Gel Modified Ag Nanoparticle Arrays for Electrochemical Modulation of Surface Plasmon Resonance , 2003 .

[8]  Chih-Ming Ho,et al.  A nanomechanical device based on linear molecular motors , 2004 .

[9]  A. Maradudin,et al.  Nano-optics of surface plasmon polaritons , 2005 .

[10]  Yuebing Zheng,et al.  Light‐Driven Plasmonic Switches Based on Au Nanodisk Arrays and Photoresponsive Liquid Crystals , 2008 .

[11]  Mark L Brongersma,et al.  A nonvolatile plasmonic switch employing photochromic molecules. , 2008, Nano letters.

[12]  T. Ebbesen,et al.  Molecule–Surface Plasmon Interactions in Hole Arrays: Enhanced Absorption, Refractive Index Changes, and All‐Optical Switching , 2006 .

[13]  Chih-Ming Ho,et al.  Linear artificial molecular muscles. , 2005, Journal of the American Chemical Society.

[14]  Harry A. Atwater,et al.  The New “p–n Junction”: Plasmonics Enables Photonic Access to the Nanoworld , 2005 .

[15]  Yuebing Zheng,et al.  Surface Plasmons of Metal Nanostructure Arrays: From Nanoengineering to Active Plasmonics , 2008 .

[16]  Yuebing Zheng,et al.  Systematic investigation of localized surface plasmon resonance of long-range ordered Au nanodisk arrays , 2008 .

[17]  Andreas Hohenau,et al.  Active plasmonic devices with anisotropic optical response: a step toward active polarizer. , 2009, Nano letters.

[18]  Gary P. Wiederrecht,et al.  Coherent Coupling of Molecular Excitons to Electronic Polarizations of Noble Metal Nanoparticles , 2004 .

[19]  W. Barnes,et al.  Energy Transfer Across a Metal Film Mediated by Surface Plasmon Polaritons , 2004, Science.

[20]  A. Credi,et al.  Molecular Devices and Machines: Concepts and Perspectives for the Nanoworld , 2008 .

[21]  Tomiki Ikeda,et al.  Rapid optical switching by means of photoinduced change in refractive index of azobenzene liquid crystals detected by reflection-mode analysis , 1997 .

[22]  Zhaowei Liu,et al.  Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects , 2007, Science.

[23]  Yuebing Zheng,et al.  Fabrication of tunable nanostructure arrays using ion-polishing-assisted nanosphere lithography , 2006 .

[24]  Yuebing Zheng,et al.  Fabrication of large area ordered metal nanoring arrays for nanoscale optical sensors , 2006 .

[25]  Bonnie A. Sheriff,et al.  A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre , 2007, Nature.

[26]  Paul S Weiss,et al.  Active molecular plasmonics: controlling plasmon resonances with molecular switches. , 2009, Nano letters.

[27]  H. Lezec,et al.  All-optical modulation by plasmonic excitation of CdSe quantum dots , 2007 .

[28]  Yuebing Zheng,et al.  Thermal behavior of localized surface plasmon resonance of Au∕TiO2 core/shell nanoparticle arrays , 2007 .

[29]  V. Shalaev,et al.  Nanophotonics with surface plasmons , 2007 .

[30]  Peter Nordlander,et al.  Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes. , 2008, Nano letters.

[31]  Tony Jun Huang,et al.  Recent Developments in Artificial Molecular-Machine–Based Active Nanomaterials and Nanosystems , 2008 .

[32]  D. Tsai,et al.  Metamaterials: optical activity without chirality. , 2009, Physical review letters.

[33]  A. Y. Elezzabi,et al.  Electron-spin-dependent terahertz light transport in spintronic-plasmonic media. , 2007, Physical review letters.

[34]  Yuebing Zheng,et al.  Selective growth of GaAs quantum dots on the triangle nanocavities bounded by SiO2 mask on Si substrate by MBE , 2004 .

[35]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[36]  Yuebing Zheng,et al.  Effects of geometry and composition on charge-induced plasmonic shifts in gold nanoparticles , 2008 .

[37]  Xiang Zhang,et al.  The metastability of an electrochemically controlled nanoscale machine on gold surfaces. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[38]  T. Ebbesen,et al.  Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.

[39]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[40]  Chih-Ming Ho,et al.  Mechanical Shuttling of Linear Motor-Molecules in Condensed Phases on Solid Substrates , 2004 .

[41]  A. Dereux,et al.  Efficient unidirectional nanoslit couplers for surface plasmons , 2007, cond-mat/0703407.

[42]  George C Schatz,et al.  Localized surface plasmon resonance spectroscopy near molecular resonances. , 2006, Journal of the American Chemical Society.

[43]  William A. Goddard,et al.  Meccano on the Nanoscale — A Blueprint for Making Some of the World′s Tiniest Machines , 2004 .

[44]  E. Hutter,et al.  Exploitation of Localized Surface Plasmon Resonance , 2004 .

[45]  Jaebeom Lee,et al.  Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection. , 2007, Nature materials.