Optical properties of strained antimonide-based heterostructures

The optical properties of strained GaAsSb/GaAs quantum wells grown by molecular beam epitaxy were investigated by photoluminescence spectroscopy as a function of excitation intensity and temperature. Photoluminescence spectra exhibit strong blue shifts of the emission peak with increasing excitation intensity, ascribed to the interplay between band tail filling at low carrier densities and electrostatic band bending at high carrier concentrations. Spectroscopic data are consistent with a type II band alignment, with a small conduction band offset (ΔEc∼100 meV), and gain spectra are blue shifted with respect to the low excitation luminescence. The large material gain and fast carrier recombination lifetimes demonstrate the viability of this material system for the fabrication of 1.3 μm lasers.

[1]  D. Kilper,et al.  Growth and optical properties of GaAsSb quantum wells for 1.3 μm VCSELs , 2001 .

[2]  J. Shah,et al.  Continuous-wave operation of a 1.3-/spl mu/m GaAsSb-GaAs quantum-well vertical-cavity surface-emitting laser at room temperature , 2001, IEEE Photonics Technology Letters.

[3]  Hans Christian Schneider,et al.  Charge-separation effects in 1.3 μm GaAsSb type-II quantum-well laser gain , 2001 .

[4]  John E. Cunningham,et al.  Room temperature operation of GaAsSb/GaAs quantum well VCSELs at 1.29 /spl mu/m , 2000 .

[5]  Guobin Liu,et al.  Optical gain of strained GaAsSb/GaAs quantum-well lasers: A self-consistent approach , 2000 .

[6]  Kent D. Choquette,et al.  Room temperature continuous wave InGaAsN quantum well vertical cavity lasers emitting at 1.3 um , 2000 .

[7]  P. D. Dapkus,et al.  Low threshold current density GaAsSb quantum well (QW) lasers grown by metal organic chemical vapour deposition on GaAs substrates , 2000 .

[8]  Alexey E. Zhukov,et al.  GaAs-based long-wavelength lasers , 2000 .

[9]  S. Sugou,et al.  Low-threshold operation of 1.3-/spl mu/m GaAsSb quantum-well lasers directly grown on GaAs substrates , 2000, IEEE Photonics Technology Letters.

[10]  Kaori Kurihara,et al.  Room temperature low-threshold CW operation of 1.23 [micro sign]m GaAsSb VCSELs on GaAs substrates , 2000 .

[11]  P. Blood On the dimensionality of optical absorption, gain, and recombination in quantum-confined structures , 2000, IEEE Journal of Quantum Electronics.

[12]  O. Blum,et al.  Characteristics of GaAsSb single-quantum-well-lasers emitting near 1.3 μm , 2000, IEEE Photonics Technology Letters.

[13]  T. Anan,et al.  Room-temperature pulsed operation of GaAsSb-GaAs vertical-cavity surface-emitting lasers , 1999 .

[14]  M. Jaroš,et al.  ELECTRONIC STRUCTURE OF GASB/GAAS QUANTUM DOMES , 1998 .

[15]  Ron Kaspi,et al.  Sb-surface segregation and the control of compositional abruptness at the interface , 1997 .

[16]  V. Narayanamurti,et al.  Local conduction band offset of GaSb self-assembled quantum dots on GaAs , 1997 .

[17]  M. Peter,et al.  Realization and modeling of a pseudomorphic (GaAs1−xSbx–InyGa1−yAs)/GaAs bilayer‐quantum well , 1995 .

[18]  Leitch,et al.  Thermally activated carrier escape mechanisms from InxGa1-xAs/GaAs quantum wells. , 1994, Physical review. B, Condensed matter.

[19]  Rajeev J Ram,et al.  Low threshold, wafer fused long wavelength vertical cavity lasers , 1994 .

[20]  Yujie J. Ding,et al.  Nonradiative recombination and saturation of traps in multiple intrinsic quantum wells , 1994 .

[21]  Homewood,et al.  Thermal quenching and retrapping effects in the photoluminescence of InyGa1-yAs/GaAs/AlxGa1-xAs multiple-quantum-well structures. , 1993, Physical review. B, Condensed matter.

[22]  Adams,et al.  Evidence of type-I band offsets in strained GaAs1-xSbx/GaAs quantum wells from high-pressure photoluminescence. , 1993, Physical review. B, Condensed matter.

[23]  Van de Walle Cg Band lineups and deformation potentials in the model-solid theory. , 1989 .

[24]  J. Chyi,et al.  Band lineup in GaAs(1-x)Sbx/GaAs strained-layer multiple quantum wells grown by molecular-beam epitaxy , 1988 .

[25]  K. Hellwege,et al.  Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology , 1967 .

[26]  M. O. Manasreh,et al.  Antimonide-Related Strained-Layer Heterostructures , 1997 .

[27]  O. Madelung,et al.  Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology - New Series , 1965 .

[28]  M P C M Krijn,et al.  Heterojunction band offsets and effective masses in III-V quaternary alloys , 1991 .

[29]  R. Bechmann,et al.  Numerical data and functional relationships in science and technology , 1969 .