GTI at SemEval-2016 Task 4: Training a Naive Bayes Classifier using Features of an Unsupervised System
暂无分享,去创建一个
Francisco Javier González-Castaño | Enrique Costa-Montenegro | Tamara Álvarez-López | Milagros Fernández Gavilanes | Jonathan Juncal-Martínez
[1] Chih-Jen Lin,et al. LIBLINEAR: A Library for Large Linear Classification , 2008, J. Mach. Learn. Res..
[2] Patrick Paroubek,et al. Twitter as a Corpus for Sentiment Analysis and Opinion Mining , 2010, LREC.
[3] Maite Taboada,et al. Lexicon-Based Methods for Sentiment Analysis , 2011, CL.
[4] Francisco Javier González-Castaño,et al. GTI: An Unsupervised Approach for Sentiment Analysis in Twitter , 2015, *SEMEVAL.
[5] Hongbo Xu,et al. Adapting Naive Bayes to Domain Adaptation for Sentiment Analysis , 2009, ECIR.
[6] Nigel Collier,et al. Sentiment Analysis using Support Vector Machines with Diverse Information Sources , 2004, EMNLP.
[7] Swati Soni,et al. Sentiment Analysis of Customer Reviews based on Hidden Markov Model , 2015, ICARCSET '15.
[8] Ian H. Witten,et al. The WEKA data mining software: an update , 2009, SKDD.
[9] Dragomir R. Radev,et al. How to Analyze Political Attention with Minimal Assumptions and Costs , 2010 .
[10] Veselin Stoyanov,et al. Evaluation Measures for the SemEval-2016 Task 4 “Sentiment Analysis in Twitter” (Draft: Version 1.13) , 2016 .