In-Stabilities of massive white dwarfs in modified gravity

Super-Chandrasekhar white dwarfs are a timely topic in the last years in the scientific community due to its connection to supernovae type Ia (SN Ia). Some early studies tackled the possibility of white dwarfs surpassing the Chandrasekhar limit by means of a magnetic field. More recently, modified gravity has been highlighted as the reason for these stars to surpass the Chandrasekhar limit and becoming a supernova progenitor. However, in general simple assumptions are considered for the stellar structure and equation of state (EoS), which can lead to unreliable conclusions. In this work, we want to be rigorous and consider a realistic EoS to describe the white dwarfs in general relativity and modified gravity, taking into account nuclear instabilities that limit the maximum mass.

[1]  M. Nowakowski,et al.  Massive white dwarfs in f ( R , L m ) gravity , 2022 .

[2]  M. Malheiro,et al.  The Structure and Stability of Massive Hot White Dwarfs , 2021, The Astrophysical Journal.

[3]  C. Bertulani,et al.  Neutron stars in $$f(\mathtt {R,L_m})$$ gravity with realistic equations of state: joint-constrains with GW170817, massive pulsars, and the PSR J0030+0451 mass-radius from NICER data , 2021, The European Physical Journal C.

[4]  A. Wojnar White dwarf stars in modified gravity , 2020, 2012.13927.

[5]  M. Daoud,et al.  Gravitational decoupling minimal geometric deformation model in modified f(R,T) gravity theory , 2020 .

[6]  M. Malheiro,et al.  Neutron stars in f(ℛ,T) gravity using realistic equations of state in the light of massive pulsars and GW170817 , 2020, Journal of Cosmology and Astroparticle Physics.

[7]  D. Rubiera-García,et al.  Stellar structure models in modified theories of gravity: Lessons and challenges , 2019, Physics Reports.

[8]  D. Deb,et al.  Study of the charged super-Chandrasekhar limiting mass white dwarfs in the f(R,T) gravity , 2019, Physical Review D.

[9]  M. Malheiro,et al.  Hydrostatic equilibrium configurations of neutron stars in a non-minimal geometry-matter coupling theory of gravity , 2019, The European Physical Journal C.

[10]  M. Malheiro,et al.  Strongly Magnetized White Dwarfs and Their Instability Due to Nuclear Processes , 2019, The Astrophysical Journal.

[11]  R. Ruffini,et al.  Time evolution of rotating and magnetized white dwarf stars , 2018, Monthly Notices of the Royal Astronomical Society.

[12]  P. Channuie,et al.  Impact of the Rastall parameter on perfect fluid spheres , 2018, Annals of Physics.

[13]  G. Lü,et al.  Properties of white dwarfs in Einstein-Λ gravity , 2018, Journal of Cosmology and Astroparticle Physics.

[14]  K. Boshkayev Equilibrium Configurations of Rotating White Dwarfs at Finite Temperatures , 2018, Astronomy Reports.

[15]  A. Siddiqa,et al.  Equilibrium configurations of anisotropic polytropes in f(R, T) gravity , 2018, The European Physical Journal Plus.

[16]  M. Malheiro,et al.  White dwarfs with a surface electrical charge distribution: equilibrium and stability , 2018, 1805.07257.

[17]  A. Siddiqa,et al.  Study of stellar structures in f(R,T) gravity , 2018 .

[18]  H. Quevedo,et al.  Non-validity of I-Love-Q Relations for Hot White Dwarf Stars , 2017, 1709.04593.

[19]  A. Mart́ınez,et al.  Magnetized and rotating white dwarfs within Hartle's formalism in general relativity , 2017 .

[20]  M. Malheiro,et al.  White Dwarf Pulsars and Very Massive Compact Ultra Magnetized White Dwarfs , 2017 .

[21]  M. Malheiro,et al.  Stellar equilibrium configurations of white dwarfs in the f(R, T) gravity , 2017, The European Physical Journal C.

[22]  R. Ruffini,et al.  Mass-radius relations of white dwarfs at finite temperatures , 2016, 1604.02391.

[23]  J. Rueda,et al.  Equilibrium structure of white dwarfs at finite temperatures , 2015, 1510.02024.

[24]  D. Bhattacharya,et al.  Mass-radius relation of strongly magnetized white dwarfs: dependence on field geometry, GR effects and electrostatic corrections to the EOS , 2015, 1710.08689.

[25]  N. Chamel,et al.  Electron capture instability in magnetic and nonmagnetic white dwarfs , 2015 .

[26]  E. Molter,et al.  Maximum strength of the magnetic field in the core of the most massive white dwarfs , 2014 .

[27]  D. Bhattacharya,et al.  Mass–radius relation of strongly magnetized white dwarfs: nearly independent of Landau quantization , 2014, 1405.2282.

[28]  R. Ruffini,et al.  Relativistic Feynman-Metropolis-Teller treatment at finite temperatures , 2013, 1312.2434.

[29]  M. Malheiro,et al.  DYNAMICAL INSTABILITY OF WHITE DWARFS AND BREAKING OF SPHERICAL SYMMETRY UNDER THE PRESENCE OF EXTREME MAGNETIC FIELDS , 2013, 1306.4658.

[30]  N. Chamel,et al.  Stability of super-Chandrasekhar magnetic white dwarfs , 2013, 1306.3444.

[31]  L. Izzo,et al.  SGR 0418+5729, Swift J1822.3-1606, and 1E 2259+586 as massive, fast-rotating, highly magnetized white dwarfs , 2013, 1305.5048.

[32]  B. Mukhopadhyay,et al.  New mass limit for white dwarfs: super-Chandrasekhar type ia supernova as a new standard candle. , 2013, Physical review letters.

[33]  H. Janka Explosion Mechanisms of Core-Collapse Supernovae , 2012, 1206.2503.

[34]  R. Ruffini,et al.  ON THE MAXIMUM MASS OF GENERAL RELATIVISTIC UNIFORMLY ROTATING WHITE DWARFS , 2011, 1210.7088.

[35]  D. G. Yakovlev,et al.  Neutron Stars 1 : Equation of State and Structure , 2007 .

[36]  K. Nomoto,et al.  The Role of Electron Captures in Chandrasekhar-Mass Models for Type Ia Supernovae , 2000, astro-ph/0001464.

[37]  Yoji Kondo,et al.  Conditions for accretion-induced collapse of white dwarfs , 1991 .

[38]  D. Adam Models of magnetic white dwarfs , 1986 .

[39]  H. Sivak,et al.  Screening potential due to the relativistic degenerate electron gas embedded in a strong magnetic field , 1985 .

[40]  P. Seymour Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects , 1984 .

[41]  R. Mochkovitch,et al.  Non Explosive Collapse of White Dwarfs , 1974 .

[42]  P. Bodenheimer,et al.  RAPIDLY ROTATING STARS. II. MASSIVE WHITE DWARFS. , 1968 .

[43]  Edwin E. Salpeter,et al.  MODELS FOR ZERO-TEMPERATURE STARS , 1961 .

[44]  E. Salpeter Energy and Pressure of a Zero-Temperature Plasma , 1961 .

[45]  N. Metropolis,et al.  Equations of State of Elements Based on the Generalized Fermi-Thomas Theory , 1949 .

[46]  G. Gamow Physical Possibilities of Stellar Evolution , 1939 .

[47]  J. Oppenheimer,et al.  On Massive neutron cores , 1939 .

[48]  R. Tolman Static Solutions of Einstein's Field Equations for Spheres of Fluid , 1939 .

[49]  L. Landau Origin of Stellar Energy , 1938, Nature.

[50]  S. Chandrasekhar The highly collapsed configurations of a stellar mass (Second paper) , 1935 .

[51]  S. Chandrasekhar The maximum mass of ideal white dwarfs , 1931 .

[52]  E. A. Milne,et al.  The Highly Collapsed Configurations of a Stellar Mass , 1931 .