Laser-Induced Thermocapillary Convection for Mesoscale Manipulation

Modulation of surface stresses is a recent and promising method to perform mesoscale manipulation of components in liquid medium. We present a promising approach using infra red laser-induced thermocapillary-driven flow for handling multiple or single large and heavy objects. The objects are immersed in thin liquid layers and in contact with the substrate surface. These objects can be handled with high speed thermocapillary convection flow reaching significant forces depending on the object sizes. Velocity measurements showed that 92 µm-sized spherical beads can be dragged with velocities of about 5.5 mm/s. Parallel non-contact micromanipulation can be achieved.

[1]  Amar S. Basu,et al.  Shaping high-speed Marangoni flow in liquid films by microscale perturbations in surface temperature , 2007 .

[2]  W. Ramsay,et al.  LXXXI.—The molecular complexity of liquids , 1893 .

[3]  Mara Prentiss,et al.  Massively parallel adhesion and reactivity measurements using simple and inexpensive magnetic tweezers , 2002 .

[4]  Vicente Pérez-Muñuzuri,et al.  Introductory analysis of Bénard–Marangoni convection , 2007 .

[5]  Fumihito Arai,et al.  Synchronized laser micromanipulation of multiple targets along each trajectory by single laser , 2004 .

[6]  Toshiro Higuchi,et al.  Contactless manipulation of microparts by electric field traps , 1998, Other Conferences.

[7]  Amar S. Basu,et al.  Virtual microfluidic traps, filters, channels and pumps using Marangoni flows , 2008 .

[8]  Ming C. Wu,et al.  Massively parallel manipulation of single cells and microparticles using optical images , 2005, Nature.

[9]  Aa Anton Darhuber,et al.  PRINCIPLES OF MICROFLUIDIC ACTUATION BY MODULATION OF SURFACE STRESSES , 2005 .

[10]  G D Costa Optical visualization of the velocity distribution in a laser-induced thermocapillary liquid flow. , 1993, Applied optics.

[11]  S. Yariv,et al.  Physical Chemistry of Surfaces , 1979 .

[12]  R. Rowell,et al.  Physical Chemistry of Surfaces, 6th ed. , 1998 .

[13]  R. Fair,et al.  Electrowetting-based actuation of liquid droplets for microfluidic applications , 2000 .

[14]  Jennifer E. Curtis,et al.  Dynamic holographic optical tweezers , 2002 .

[15]  D. Collard,et al.  Micro gripper driven by SDAs coupled to an amplification mechanism , 2003, TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664).

[16]  Wook Park,et al.  Guided and fluidic self-assembly of microstructures using railed microfluidic channels. , 2008, Nature materials.

[17]  Klaus Rink,et al.  Non-contact mesoscale manipulation using laser induced convection flows , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  S. Quake,et al.  Microfluidics: Fluid physics at the nanoliter scale , 2005 .

[19]  Jon P. Longtin,et al.  Laser-induced surface-tension-driven flows in liquids , 1999 .

[20]  David McGloin,et al.  Thermocapillary manipulation of droplets using holographic beam shaping: Microfluidic pin ball , 2008 .

[21]  Sandra M. Troian,et al.  Patterning liquid flow on the microscopic scale , 1999, Nature.

[22]  Hsan-Yin Hsu,et al.  Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate. , 2007, Applied physics letters.

[23]  Stephane Regnier,et al.  Controlled rolling of microobjects for autonomous manipulation , 2006 .

[24]  Sigurd Wagner,et al.  Thermocapillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays , 2003 .

[25]  Stephane Regnier,et al.  Surface and contact forces models within the framework of microassembly , 2006 .

[26]  Isao Ishibashi,et al.  EXPERIMENTAL DETERMINATIONS OF CONTACT FRICTION FOR SPHERICAL GLASS PARTICLES , 1994 .

[27]  Stephane Regnier,et al.  Electrostatic actuated micro gripper using an amplification mechanism , 2004 .

[28]  François Gallaire,et al.  Thermocapillary valve for droplet production and sorting. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.