Candelabra systems and designs

Abstract Combinatorial structures called candelabra systems can be used in recursive constructions to build Steiner 3-designs. We introduce a new closure operation on natural numbers involving candelabra systems. This new closure operation makes it possible to generalize various constructions for Steiner 3-designs and to create new infinite families of Steiner 2-designs and 3-designs. We provide an independent proof for Wilson's “product theorem” for Steiner 3-designs. We also construct new group divisible designs of strength 2 and 3.

[1]  R. C. Bose,et al.  Further Results on the Construction of Mutually Orthogonal Latin Squares and the Falsity of Euler's Conjecture , 1960, Canadian Journal of Mathematics.

[2]  John L. Blanchard,et al.  A Construction for Steiner 3-Designs , 1995, J. Comb. Theory, Ser. A.

[3]  Kuang-I Chang,et al.  An existence theory for group divisible designs , 1976 .

[4]  Dwijendra K. Ray-Chaudhuri,et al.  A Construction for Infinite Families of Steiner 3-Designs , 2001, J. Comb. Theory, Ser. A.

[5]  John L. Blanchard,et al.  A construction for orthorgonal arrays with strength t>=3 , 1995, Discret. Math..

[6]  Ahmed M. Assaf,et al.  Modified group divisible designs with block size 4 and λ>1 , 1999, Australas. J Comb..

[7]  Richard M. Wilson,et al.  An Existence Theory for Pairwise Balanced Designs II. The Structure of PBD-Closed Sets and the Existence Conjectures , 1972, J. Comb. Theory A.

[8]  Richard M. Wilson,et al.  An Existence Theory for Pairwise Balanced Designs, III: Proof of the Existence Conjectures , 1975, J. Comb. Theory, Ser. A.

[9]  Richard M. Wilson,et al.  An Existence Theory for Pairwise Balanced Designs II. The Structure of PBD-Closed Sets and the Existence Conjectures , 1972, J. Comb. Theory, Ser. A.

[10]  Richard M. Wilson,et al.  An Existence Theory for Pairwise Balanced Designs I. Composition Theorems and Morphisms , 1972, J. Comb. Theory, Ser. A.

[11]  Navin M. Singhi,et al.  On existence and number of orthogonal arrays , 1988, J. Comb. Theory, Ser. A.

[12]  Douglas R Stinson,et al.  Contemporary design theory : a collection of surveys , 1992 .

[13]  Haim Hanani,et al.  On Some Tactical Configurations , 1963, Canadian Journal of Mathematics.

[14]  C. Colbourn,et al.  The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.

[15]  Haim Hanani,et al.  On Quadruple Systems , 1960, Canadian Journal of Mathematics.

[16]  Alan Hartman,et al.  The fundamental construction for 3-designs , 1994, Discret. Math..

[17]  Hanfried Lenz,et al.  Design theory , 1985 .

[18]  K. A. Bush Orthogonal Arrays of Index Unity , 1952 .