Multi-value private information retrieval with colluding databases via trace functions

Abstract A classic t-private PIR (private information retrieval) scheme allows a user to retrieve one out of n values from k communicating replicated databases while any t of the k databases cannot identify the value being retrieved. However, in reality, the user may be more interested in retrieving multiple values simultaneously. This paper is devoted to the PIR problem with m retrieved values and k databases against t colluding databases (t-private MPIR) in the context of information-theoretic security. The relationship m ⩽ w ( k - t ) is derived, where w is the largest average amount of information got by the user from each of the k databases. When w = 1 , via trace functions in finite fields, a t-private MPIR scheme retrieving m = k - t values is presented with the complexity O ( log n ) . Our scheme provides a lower complexity than those in the literature (the best known complexity for general t and k is a fractional power function of n).

[1]  Alfredo De Santis,et al.  A t-private k-database information retrieval scheme , 2001, International Journal of Information Security.

[2]  Hua Sun,et al.  The Capacity of Robust Private Information Retrieval With Colluding Databases , 2016, IEEE Transactions on Information Theory.

[3]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[4]  Salim El Rouayheb,et al.  Private Information Retrieval From MDS Coded Data in Distributed Storage Systems , 2016, IEEE Transactions on Information Theory.

[5]  Yuval Ishai,et al.  Improved upper bounds on information-theoretic private information retrieval , 1999, STOC 1999.

[6]  David P. Woodruff,et al.  A geometric approach to information-theoretic private information retrieval , 2005, 20th Annual IEEE Conference on Computational Complexity (CCC'05).

[7]  Hua Sun,et al.  The Capacity of Private Information Retrieval , 2016, 2016 IEEE Global Communications Conference (GLOBECOM).

[8]  Douglas R. Stinson,et al.  Cryptography: Theory and Practice , 1995 .

[9]  Robert H. Deng,et al.  A new hardware-assisted PIR with O(n) shuffle cost , 2010, International Journal of Information Security.

[10]  Sennur Ulukus,et al.  The Capacity of Private Information Retrieval From Coded Databases , 2016, IEEE Transactions on Information Theory.

[11]  Sennur Ulukus,et al.  Multi-Message Private Information Retrieval: Capacity Results and Near-Optimal Schemes , 2017, IEEE Transactions on Information Theory.

[12]  Amos Beimel,et al.  Robust Information-Theoretic Private Information Retrieval , 2002, Journal of Cryptology.

[13]  Klim Efremenko,et al.  3-Query Locally Decodable Codes of Subexponential Length , 2008 .

[14]  Mitsuru Ito,et al.  Secret sharing scheme realizing general access structure , 1989 .

[15]  Hua Sun,et al.  The Capacity of Symmetric Private Information Retrieval , 2019, IEEE Transactions on Information Theory.

[16]  Eyal Kushilevitz,et al.  Private information retrieval , 1998, JACM.

[17]  Douglas R. Stinson,et al.  Extended results on privacy against coalitions of users in user-private information retrieval protocols , 2015, Cryptography and Communications.

[18]  Yuval Ishai,et al.  General constructions for information-theoretic private information retrieval , 2005, J. Comput. Syst. Sci..

[19]  Rudolf Lide,et al.  Finite fields , 1983 .

[20]  Maria Bras-Amorós,et al.  Optimal configurations for peer-to-peer user-private information retrieval , 2010, Comput. Math. Appl..