On zero-free regions for the anti-ferromagnetic Potts model on bounded-degree graphs

For a graph $G=(V,E)$, $k\in \mathbb{N}$, and a complex number $w$ the partition function of the univariate Potts model is defined as \[ {\bf Z}(G;k,w):=\sum_{\phi:V\to [k]}\prod_{\substack{uv\in E \\ \phi(u)=\phi(v)}}w, \] where $[k]:=\{1,\ldots,k\}$. In this paper we give zero-free regions for the partition function of the anti-ferromagnetic Potts model on bounded degree graphs. In particular we show that for any $\Delta\in \mathbb{N}$ and any $k\geq e\Delta+1$, there exists an open set $U$ in the complex plane that contains the interval $[0,1)$ such that ${\bf Z}(G;k,w)\neq 0$ for any $w\in U$ and any graph $G$ of maximum degree at most $\Delta$. (Here $e$ denotes the base of the natural logarithm.) For small values of $\Delta$ we are able to give better results. As an application of our results we obtain improved bounds on $k$ for the existence of deterministic approximation algorithms for counting the number of proper $k$-colourings of graphs of small maximum degree.

[1]  Geoffrey Grimmett The Random-Cluster Model , 2002, math/0205237.

[2]  T. D. Lee,et al.  Statistical Theory of Equations of State and Phase Transitions. I. Theory of Condensation , 1952 .

[3]  Alexander I. Barvinok,et al.  Combinatorics and Complexity of Partition Functions , 2017, Algorithms and combinatorics.

[4]  Aldo Procacci,et al.  Regions Without Complex Zeros for Chromatic Polynomials on Graphs with Bounded Degree , 2008, Comb. Probab. Comput..

[5]  J. Salas,et al.  Exact Potts Model Partition Functions for Strips of the Triangular Lattice , 2022 .

[6]  Alan D. Sokal,et al.  Bounds on the Complex Zeros of (Di)Chromatic Polynomials and Potts-Model Partition Functions , 1999, Combinatorics, Probability and Computing.

[7]  Pinyan Lu,et al.  An FPTAS for Counting Proper Four-Colorings on Cubic Graphs , 2017, SODA.

[8]  Eric Vigoda,et al.  Inapproximability for antiferromagnetic spin systems in the tree non-uniqueness region , 2013, STOC.

[9]  Han Peters,et al.  On a conjecture of Sokal concerning roots of the independence polynomial , 2017, Michigan Mathematical Journal.

[10]  Alan D. Sokal The multivariate Tutte polynomial (alias Potts model) for graphs and matroids , 2005, Surveys in Combinatorics.

[11]  Eric Vigoda,et al.  Improved bounds for sampling colorings , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[12]  C. Fortuin,et al.  On the random-cluster model: I. Introduction and relation to other models , 1972 .

[13]  Robert Shrock Exact Potts Model Partition Functions on Ladder Graphs , 2000 .

[14]  Alexander Barvinok,et al.  Approximating permanents and hafnians , 2016, 1601.07518.

[15]  Alexander I. Barvinok,et al.  Computing the partition function for graph homomorphisms , 2014, Comb..

[16]  Han Peters,et al.  Location of zeros for the partition function of the Ising model on bounded degree graphs , 2018, ArXiv.

[17]  Statistics,et al.  Study of the Potts model on the honeycomb and triangular lattices: Low-temperature series and partition function zeros , 1998, cond-mat/9801305.

[18]  Viresh Patel,et al.  Deterministic polynomial-time approximation algorithms for partition functions and graph polynomials , 2016, Electron. Notes Discret. Math..

[19]  Guus Regts,et al.  Zero-Free Regions of Partition Functions with Applications to Algorithms and Graph Limits , 2015, Combinatorica.

[20]  Shu-Chiuan Chang,et al.  Exact Potts model partition function on strips of the triangular lattice , 2000, cond-mat/0004181.

[21]  Piyush Srivastava,et al.  Fisher zeros and correlation decay in the Ising model , 2018, ITCS.

[22]  Luke Postle,et al.  Improved Bounds for Randomly Sampling Colorings via Linear Programming , 2018, SODA.

[23]  Pinyan Lu,et al.  Improved FPTAS for Multi-spin Systems , 2013, APPROX-RANDOM.

[24]  W. K. Hayman UNIVALENT FUNCTIONS (Grundlehren der mathematischen Wissenschaften, 259) , 1984 .

[25]  Shu-Chiuan Chang,et al.  Exact Potts model partition functions on strips of the honeycomb lattice , 2000, cond-mat/0008477.

[26]  Bill Jackson,et al.  Complex zero-free regions at large |q| for multivariate Tutte polynomials (alias Potts-model partition functions) with general complex edge weights , 2008, J. Comb. Theory, Ser. B.