The Reproductive Plan Language RPL2: Motivation, Architecture and Applications

The reproductive plan language RPL2 is a computer language designed to facilitate the writing, execution and modification of evolutionary algorithms. It provides a number of data parallel constructs appropriate to evol- utionary computing, facilitating the building of efficient parallel interpreters and compilers. This facility is exploited by the current interpreted implementa- tion. RPL2 supports all current structured population models and their hybrids at language level. Users can extend the system by linking against the supplied framework C-callable functions, which may then be invoked directly from an RPL2 program. There are no restrictions on the form of genomes, making the language particularly well suited to real-world optimisation problems and the production of hybrid algorithms. This paper describes the theoretical and prac- tical considerations that shaped the design of RPL2, the language, interpreter and run-time system built, and a suite of industrial applications that have used the system. 1 Motivation

[1]  Arno Siebes,et al.  Data Mining: the search for knowledge in databases. , 1994 .

[2]  Nicholas J. Radcliffe,et al.  Genetic neural networks on MIMD computers , 1992 .

[3]  Michael D. Vose,et al.  Generalizing the Notion of Schema in Genetic Algorithms , 1991, Artif. Intell..

[4]  Nicholas J. Radcliffe,et al.  Genetic Set Recombination , 1992, FOGA.

[5]  Thomas Bäck,et al.  A Survey of Evolution Strategies , 1991, ICGA.

[6]  Nicholas J. Radcliffe,et al.  Equivalence Class Analysis of Genetic Algorithms , 1991, Complex Syst..

[7]  L. Darrell Whitley,et al.  Genetic algorithms and neural networks: optimizing connections and connectivity , 1990, Parallel Comput..

[8]  Bernard Manderick,et al.  A Massively Parallel Genetic Algorithm: Implementation and First Analysis , 1991, ICGA.

[9]  Akihiko Konagaya,et al.  A Fine-Grained Parallel Genetic Algorithm for Distributed Parallel Systems , 1993, ICGA.

[10]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[11]  Andrew J. Mason,et al.  Crossover Non-linearity Ratios and the Genetic Algorithm: Escaping the Blinkers of Schema Processing , 1993 .

[12]  George Marsaglia,et al.  Toward a universal random number generator , 1987 .

[13]  L. Darrell Whitley,et al.  Scheduling Problems and Traveling Salesmen: The Genetic Edge Recombination Operator , 1989, International Conference on Genetic Algorithms.

[14]  Dana S. Richards,et al.  Punctuated Equilibria: A Parallel Genetic Algorithm , 1987, ICGA.

[15]  David E. Goldberg,et al.  An Analysis of Reproduction and Crossover in a Binary-Coded Genetic Algorithm , 1987, ICGA.

[16]  D. E. Goldberg,et al.  Genetic Algorithms in Search, Optimization & Machine Learning , 1989 .

[17]  Takeshi Yamada,et al.  The ECOlogical Framework II : Improving GA Performance At Virtually Zero Cost , 1993, ICGA.

[18]  David E. Goldberg,et al.  Alleles, loci and the traveling salesman problem , 1985 .

[19]  Reiko Tanese,et al.  Distributed Genetic Algorithms , 1989, ICGA.

[20]  Martina Gorges-Schleuter,et al.  ASPARAGOS An Asynchronous Parallel Genetic Optimization Strategy , 1989, ICGA.

[21]  Lawrence Davis,et al.  Adapting Operator Probabilities in Genetic Algorithms , 1989, ICGA.

[22]  Gunar E. Liepins,et al.  Some Guidelines for Genetic Algorithms with Penalty Functions , 1989, ICGA.

[23]  Jim Antonisse,et al.  A New Interpretation of Schema Notation that Overtums the Binary Encoding Constraint , 1989, ICGA.

[24]  Nicholas J. Radcliffe,et al.  Non-Linear Genetic Representations , 1992, PPSN.

[25]  L. Darrell Whitley,et al.  Serial and Parallel Genetic Algorithms as Function Optimizers , 1993, ICGA.

[26]  Patrick D. Surry,et al.  Formal Memetic Algorithms , 1994, Evolutionary Computing, AISB Workshop.

[27]  David E. Goldberg,et al.  Real-coded Genetic Algorithms, Virtual Alphabets, and Blocking , 1991, Complex Syst..

[28]  Martina Gorges-Schleuter,et al.  Explicit Parallelism of Genetic Algorithms through Population Structures , 1990, PPSN.

[29]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[30]  Colin R. Reeves,et al.  Using Genetic Algorithms with Small Populations , 1993, ICGA.

[31]  Zbigniew Michalewicz,et al.  Handling Constraints in Genetic Algorithms , 1991, ICGA.

[32]  Gunar E. Liepins,et al.  Schema Disruption , 1991, ICGA.

[33]  Bernard Manderick,et al.  Fine-Grained Parallel Genetic Algorithms , 1989, ICGA.

[34]  Patrick D. Surry,et al.  Fitness Variance of Formae and Performance Prediction , 1994, FOGA.

[35]  Chrisila C. Pettey,et al.  A Theoretical Investigation of a Parallel Genetic Algorithm , 1989, ICGA.

[36]  Emile H. L. Aarts,et al.  Parallel Local Search and the Travelling Salesman Problem , 1992, Parallel Problem Solving from Nature.

[37]  W. Daniel Hillis,et al.  Co-evolving parasites improve simulated evolution as an optimization procedure , 1990 .

[38]  Shumeet Baluja,et al.  Structure and Performance of Fine-Grain Parallelism in Genetic Search , 1993, ICGA.

[39]  Lashon B. Booker,et al.  Proceedings of the fourth international conference on Genetic algorithms , 1991 .

[40]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[41]  Phil Husbands,et al.  Simulated Co-Evolution as the Mechanism for Emergent Planning and Scheduling , 1991, ICGA.

[42]  Nicholas J. Radcliffe,et al.  Forma Analysis and Random Respectful Recombination , 1991, ICGA.

[43]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[44]  B. R. Fox,et al.  Genetic Operators for Sequencing Problems , 1990, FOGA.

[45]  L. Darrell Whitley,et al.  Optimization Using Distributed Genetic Algorithms , 1990, PPSN.

[46]  J. David Schaffer,et al.  Representation and Hidden Bias: Gray vs. Binary Coding for Genetic Algorithms , 1988, ML.

[47]  Heinz Mühlenbein,et al.  Parallel Genetic Algorithms, Population Genetics, and Combinatorial Optimization , 1989, Parallelism, Learning, Evolution.

[48]  J. David Schaffer,et al.  Proceedings of the third international conference on Genetic algorithms , 1989 .

[49]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.