Rough sets, their extensions and applications

Rough set theory provides a useful mathematical foundation for developing automated computational systems that can help understand and make use of imperfect knowledge. Despite its recency, the theory and its extensions have been widely applied to many problems, including decision analysis, data mining, intelligent control and pattern recognition. This paper presents an outline of the basic concepts of rough sets and their major extensions, covering variable precision, tolerance and fuzzy rough sets. It also shows the diversity of successful applications these theories have entailed, ranging from financial and business, through biological and medicine, to physical, art, and meteorological.

[1]  Andrzej Skowron,et al.  Boolean Reasoning for Feature Extraction Problems , 1997, ISMIS.

[2]  Qiang Shen,et al.  Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based approaches , 2004, IEEE Transactions on Knowledge and Data Engineering.

[3]  Bozena Kostek,et al.  Processing of Musical Data Employing Rough Sets and Artificial Neural Networks , 2004, Trans. Rough Sets.

[4]  Tapio Salakoski,et al.  Extracting Protein-Protein Interaction Sentences by Applying Rough Set Data Analysis , 2004, Rough Sets and Current Trends in Computing.

[5]  Ivo Düntsch,et al.  Rough Set Data Analysis , 2000 .

[6]  Massimo Paruccini,et al.  Applying multiple criteria aid for decision to environmental management. , 1994 .

[7]  S. Nanda,et al.  Fuzzy rough sets , 1992 .

[8]  Z. Pawlak,et al.  A Rough Set Perspective on Data andKnowledge ? , 1999 .

[9]  Huan Liu,et al.  Feature Selection for Classification , 1997, Intell. Data Anal..

[10]  Wojtek Michalowski,et al.  Rough Set Methodology in Clinical Practice: Controlled Hospital Trial of the MET System , 2004, Rough Sets and Current Trends in Computing.

[11]  Vijay V. Raghavan,et al.  The Status of Research on Rough Sets for Knowledge Discovery in Databases , 1998 .

[12]  Ewa Lukasik,et al.  Inducing Jury's Preferences in Terms of Acoustic Features of Violin Sounds , 2004, ICAISC.

[13]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[14]  Wei-Zhi Wu,et al.  Generalized fuzzy rough sets , 2003, Inf. Sci..

[15]  Sheela Ramanna,et al.  Classification of Swallowing Sound Signals: A Rough Set Approach , 2004, Rough Sets and Current Trends in Computing.

[16]  Alberto Maria Segre,et al.  Programs for Machine Learning , 1994 .

[17]  Daniel S. Yeung,et al.  Rough approximations on a complete completely distributive lattice with applications to generalized rough sets , 2006, Inf. Sci..

[18]  Qiang Shen,et al.  Rough set-aided keyword reduction for text categorization , 2001, Appl. Artif. Intell..

[19]  Witold Pedrycz,et al.  Classification of meteorological volumetric radar data using rough set methods , 2003, Pattern Recognit. Lett..

[20]  Donald H. Kraft,et al.  Vocabulary mining for information retrieval: rough sets and fuzzy sets , 2001, Inf. Process. Manag..

[21]  Andrzej Skowron,et al.  From the Rough Set Theory to the Evidence Theory , 1991 .

[22]  Qiang Shen,et al.  Fuzzy Entropy-assisted Fuzzy-Rough Feature Selection , 2006, 2006 IEEE International Conference on Fuzzy Systems.

[23]  U. Höhle Quotients with respect to similarity relations , 1988 .

[24]  Qinghua Hu,et al.  Fuzzy probabilistic approximation spaces and their information measures , 2006, IEEE Transactions on Fuzzy Systems.

[25]  De-gang Chen,et al.  On the reduction of fuzzy rough sets , 2005, 2005 International Conference on Machine Learning and Cybernetics.

[26]  Z. Pawlak,et al.  Rough sets perspective on data and knowledge , 2002 .

[27]  Rajen B. Bhatt,et al.  On the compact computational domain of fuzzy-rough sets , 2005, Pattern Recognit. Lett..

[28]  Anna Maria Radzikowska,et al.  A comparative study of fuzzy rough sets , 2002, Fuzzy Sets Syst..

[29]  T. Iwiński Algebraic approach to rough sets , 1987 .

[30]  Z. Pawlak,et al.  Rough membership functions , 1994 .

[31]  C. Zopounidis,et al.  Rough-Set Sorting of Firms According to Bankruptcy Risk , 1994 .

[32]  Yiyu Yao Combination of Rough and Fuzzy Sets Based on α-Level Sets , 1997 .

[33]  Sinh Hoa Nguyen,et al.  Rough Set Approach to Sunspot Classification Problem and Granular Computing, 10th International Conference; RSFDGrC 2005, Regina, Canada, August 31-September 3, 2005, Proceedings, Part II , 2005 .

[34]  Wojciech Ziarko,et al.  Variable Precision Rough Set Model , 1993, J. Comput. Syst. Sci..

[35]  Jack Belzer,et al.  Encyclopedia of Computer Science and Technology , 2002 .

[36]  Darek Ceglarek,et al.  Continuous Failure Diagnosis for Assembly Systems using Rough Set Approach , 2004 .

[37]  Zdzislaw Pawlak,et al.  Some Issues on Rough Sets , 2004, Trans. Rough Sets.

[38]  Qiang Shen,et al.  Selecting informative features with fuzzy-rough sets and its application for complex systems monitoring , 2004, Pattern Recognit..

[39]  Arthur P. Dempster,et al.  A Generalization of Bayesian Inference , 1968, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[40]  Daniel S. Yeung,et al.  On attributes reduction with fuzzy rough sets , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[41]  Janusz Zalewski,et al.  Rough sets: Theoretical aspects of reasoning about data , 1996 .

[42]  Wang Ju,et al.  Reduction algorithms based on discernibility matrix: The ordered attributes method , 2001, Journal of Computer Science and Technology.

[43]  Alicja Mieszkowicz-Rolka,et al.  Variable Precision Fuzzy Rough Sets Model in the Analysis of Process Data , 2005, RSFDGrC.

[44]  Rajen B. Bhatt,et al.  On fuzzy-rough sets approach to feature selection , 2005, Pattern Recognit. Lett..

[45]  Andrzej Skowron,et al.  Rough Sets: A Tutorial , 1998 .

[46]  Didier Dubois,et al.  Putting Rough Sets and Fuzzy Sets Together , 1992, Intelligent Decision Support.

[47]  Monika P. Hippe Towards the Classification of Musical Works: A Rough Set Approach , 2002, Rough Sets and Current Trends in Computing.

[48]  Weisheng Li,et al.  Face Recognition Based on Fuzzy Rough Set Reduction , 2006, 2006 International Conference on Hybrid Information Technology.

[49]  Andrzej Skowron,et al.  Tolerance Approximation Spaces , 1996, Fundam. Informaticae.

[50]  J. Recasens,et al.  UPPER AND LOWER APPROXIMATIONS OF FUZZY SETS , 2000 .

[51]  Victor W. Marek,et al.  Myths about rough set theory , 1998, CACM.

[52]  Alicja Mieszkowicz-Rolka,et al.  Variable Precision Fuzzy Rough Sets , 2004, Trans. Rough Sets.

[53]  Jerzy Stefanowski,et al.  On rough set based approaches to induction of decision rules , 1998 .

[54]  S. Tsumoto,et al.  Rough set methods and applications: new developments in knowledge discovery in information systems , 2000 .

[55]  Marzena Kryszkiewicz Maintenance of Reducts in the Variable Precision Rough Set Model , 1997 .

[56]  Robert Golan,et al.  Temporal Rules Discovery Using Datalogic/R+ with Stock Market Data , 1993, RSKD.

[57]  Arlene Mandell Turning The Key , 1992 .

[58]  Constantin Zopounidis,et al.  Application of the Rough Set Approach to Evaluation of Bankruptcy Risk , 1995 .

[59]  Roman Słowiński,et al.  Intelligent Decision Support , 1992, Theory and Decision Library.

[60]  Wei-Zhi Wu,et al.  A Study on Relationship Between Fuzzy Rough Approximation Operators and Fuzzy Topological Spaces , 2005, FSKD.

[61]  H. Thiele Fuzzy Rough Sets versus Rough Fuzzy Sets — An Interpretation and a Comparative Study using Concepts of Modal Logics , 1998 .

[62]  Francis Eng Hock Tay,et al.  Economic and financial prediction using rough sets model , 2002, Eur. J. Oper. Res..

[63]  Andrzej Skowron,et al.  Rough set methods in feature selection and recognition , 2003, Pattern Recognit. Lett..

[64]  Andrzej Skowron,et al.  Dynamic Reducts as a Tool for Extracting Laws from Decisions Tables , 1994, ISMIS.

[65]  Wei-Zhi Wu,et al.  Constructive and axiomatic approaches of fuzzy approximation operators , 2004, Inf. Sci..

[66]  Andrzej Skowron,et al.  Rough-Fuzzy Hybridization: A New Trend in Decision Making , 1999 .

[67]  Qiang Shen Semantics-Preserving Dimensionality Reduction in Intelligent Modelling , 2003, Modelling with Words.

[68]  Malcolm J. Beynon An Investigation of beta-Reduct Selection within the Variable Precision Rough Sets Model , 2000, Rough Sets and Current Trends in Computing.

[69]  Malcolm J. Beynon,et al.  Reducts within the variable precision rough sets model: A further investigation , 2001, Eur. J. Oper. Res..

[70]  Jan Komorowski,et al.  Learning Rule-based Models of Biological Process from Gene Expression Time Profiles Using Gene Ontology , 2003, Bioinform..

[71]  Qinghua Hu,et al.  Information-preserving hybrid data reduction based on fuzzy-rough techniques , 2006, Pattern Recognit. Lett..

[72]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[73]  W. Ziarko,et al.  An application of DATALOGIC/R knowledge discovery tool to identify strong predictive rules in stock market data , 1993 .

[74]  Jan Komorowski,et al.  Learning Rough Set Classifiers from Gene Expressions and Clinical Data , 2002, Fundam. Informaticae.

[75]  Yee Leung,et al.  On characterizations of (I, J)-fuzzy rough approximation operators , 2005, Fuzzy Sets Syst..

[76]  Xizhao Wang,et al.  On the generalization of fuzzy rough sets , 2005, IEEE Transactions on Fuzzy Systems.

[77]  Chris Cornelis,et al.  Fuzzy rough sets: beyond the obvious , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).

[78]  Eberhard F. Kochs,et al.  Rough Set-Based Classification of EEG-Signals to Detect Intraoperative Awareness: Comparison of Fuzzy and Crisp Discretization of Real Value Attributes , 2004, Rough Sets and Current Trends in Computing.

[79]  Sinh Hoa Nguyen,et al.  Rough Set Approach to Sunspot Classification Problem , 2005, RSFDGrC.

[80]  R. Ribeiro Soft computing in financial engineering , 1999 .

[81]  Constantin Zopounidis,et al.  A survey of business failures with an emphasis on prediction methods and industrial applications , 1996 .

[82]  Wen-Xiu Zhang,et al.  An axiomatic characterization of a fuzzy generalization of rough sets , 2004, Inf. Sci..

[83]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[84]  Qiang Shen,et al.  Fuzzy-rough data reduction with ant colony optimization , 2005, Fuzzy Sets Syst..

[85]  Anna Maria Radzikowska,et al.  Fuzzy Rough Sets Based on Residuated Lattices , 2004, Trans. Rough Sets.

[86]  Liangsheng Qu,et al.  Fault diagnosis using Rough Sets Theory , 2000 .

[87]  Andrzej Skowron,et al.  The Discernibility Matrices and Functions in Information Systems , 1992, Intelligent Decision Support.

[88]  Maciej Wygralak Rough sets and fuzzy sets—some remarks on interrelations , 1989 .

[89]  Nehad N. Morsi,et al.  Axiomatics for fuzzy rough sets , 1998, Fuzzy Sets Syst..

[90]  Qiang Shen,et al.  Fuzzy-Rough Sets Assisted Attribute Selection , 2007, IEEE Transactions on Fuzzy Systems.

[91]  Constantin Zopounidis,et al.  Business failure prediction using rough sets , 1999, Eur. J. Oper. Res..

[92]  Zheng Pei,et al.  On the topological properties of fuzzy rough sets , 2005, Fuzzy Sets Syst..