Nineteen Dubious Ways to Compute the Exponential of a Matrix

In principle, the exponential of a matrix could be computed in many ways. Methods involving approximation theory, differential equations, the matrix eigenvalues, and the matrix characteristic polyn...

[1]  R. F. Rinehart The Equivalence of Definitions of a Matric Function , 1955 .

[2]  D. Faddeev,et al.  Computational Methods of Linear Algebra , 1959 .

[3]  Richard Bellman,et al.  Introduction to Matrix Analysis , 1972 .

[4]  G. Dahlquist Stability and error bounds in the numerical integration of ordinary differential equations , 1961 .

[5]  R. Varga On Higher Order Stable Implicit Methods for Solving Parabolic Partial Differential Equations , 1961 .

[6]  A. Maradudin,et al.  The Baker‐Hausdorff Formula and a Problem in Crystal Physics , 1962 .

[7]  Matrix functions and applications , 1964, IEEE Spectrum.

[8]  J. S. Frame Matrix functions and applications: Part IV — Matrix functions and constituent matrices , 1964, IEEE Spectrum.

[9]  J. S. Frame Matrix functions and applications: Part V — Similarity reductions by rational or orthogonal matrices , 1964, IEEE Spectrum.

[10]  W. Little,et al.  A STABLE NUMERICAL SOLUTION OF THE REACTOR KINETICS EQUATIONS , 1964 .

[11]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[12]  F. V. Vleck,et al.  Stability and Asymptotic Behavior of Differential Equations , 1965 .

[13]  M. Liou A novel method of evaluating transient response , 1966 .

[14]  W. E. Thomson,et al.  Evaluation of transient response , 1966 .

[15]  D. E. Whitney,et al.  Propagated error bounds for numerical solution of transient response , 1966 .

[16]  Tosio Kato Perturbation theory for linear operators , 1966 .

[17]  E. Putzer Avoiding the Jordan Canonical Form in the Discussion of Linear Systems with Constant Coefficients , 1966 .

[18]  C. Chen,et al.  Generalization of Heaviside's Expansion Technique to Transition Matrix Evaluation , 1966 .

[19]  M. L. Liou,et al.  On the evaluation of e AT by power series , 1967 .

[20]  M. L. Liou Evaluation of the transition matrix , 1967 .

[21]  Jr. F.H. Branin Computer methods of network analysis , 1967 .

[22]  R. B. Kirchner An Explicit Formula for eAt , 1967 .

[23]  P. Rosenbloom Bounds on Functions of Matrices , 1967 .

[24]  D. Calahan Numerical solution of linear systems with widely separated time constants , 1967 .

[25]  T. Bickart Matrix exponential: Approximation by truncated power series , 1968 .

[26]  A. Choudhury,et al.  On the evaluation of e Aτ , 1968 .

[27]  S. Yuan On logarithmic derivatives , 1968 .

[28]  N. Ahmed,et al.  Heaviside's expansion of transition matrices , 1968 .

[29]  I. Kaufman Evaluation of an analytical function of a companion matrix with distinct eigenvalues , 1969 .

[30]  S. Ganapathy,et al.  Transient response evaluation from the state transition matrix , 1969 .

[31]  J. Mankin,et al.  On round-off errors in computation of transition matrices , 1969 .

[32]  A. Choudhury,et al.  Numerical computation method for the evaluation of the transition matrix , 1969 .

[33]  I. Kaufman A note on the "Evaluation of an analytical function of a companion matrix with distinct eigenvalues" , 1969 .

[34]  E. Mastascusa A relation between Liou's method and the fourth-order Runge-Kutta method for evaluating transient response , 1969 .

[35]  A. Levis Some computational aspects of the matrix exponential , 1969 .

[36]  N. Ahmed,et al.  Evaluation of transition matrices , 1969 .

[37]  A. Choudhury,et al.  On the evaluation of the state transition matrix , 1969 .

[38]  D. E. Whitney More about similarities between Runge-Kutta and matrix exponential methods for evaluating transient response , 1969 .

[39]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[40]  E. Mastascusa A method for calculating e AT based on the Cayley-Hamilton theorem , 1969 .

[41]  Y. Luke,et al.  Padé approximations to the operator exponential , 1970 .

[42]  I. Kaufman,et al.  On systems described by the companion matrix , 1970 .

[43]  M. Vidyasagar A novel method of evaluating e^{At} in closed form , 1970 .

[44]  A. D. Ziebur On Determining the Structure of A by Analyzing $e^{At} $ , 1970 .

[45]  V. Zakian Rational approximants to the matrix exponential , 1970 .

[46]  G. Fronza,et al.  On the evaluation of the transition matrix , 1970 .

[47]  J. L. Blue,et al.  Rational approximations to matrix exponential for systems of stiff differential equations , 1970 .

[48]  V. Zakian Solution of homogeneous ordinary linear differential systems by numerical inversion of Laplace transforms , 1971 .

[49]  C. W. Gear,et al.  Numerical initial value problem~ in ordinary differential eqttations , 1971 .

[50]  M. Vidyasagar,et al.  Comments on "A novel method of evaluating e At in closed form" , 1971 .

[51]  G. Bierman Finite series solutions for the transition matrix and the covariance of a time-invariant system , 1971 .

[52]  J. Johnson,et al.  An algorithm for the computation of the integral of the state transition matrix , 1971 .

[53]  J. Vlach,et al.  A fast procedure for the analysis of linear time-invariant networks , 1971 .

[54]  J. Boehm,et al.  An Algorithm for Generating Constituent Matrices , 1971 .

[55]  R. Scraton Comment on 'Rational approximants to the matrix exponential' [and reply] , 1971 .

[56]  G. Bierman Power series evaluation of transition and covariance matrices , 1972 .

[57]  C. Desoer,et al.  The measure of a matrix as a tool to analyze computer algorithms for circuit analysis , 1972 .

[58]  K. C. Daly Evaluating the matrix exponential , 1972 .

[59]  D. Gall The solution of linear, constant-coefficient, ordinary differential equations with APL , 1972 .

[60]  Evalaution of the matrix exponential , 1973 .

[61]  M. Healey Study of methods of computing transition matrices , 1973 .

[62]  A. Wragg,et al.  Computation of the Exponential of a Matrix I: Theoretical Considerations , 1973 .

[63]  C. Harris Evaluation of matrix polynomials in the state companion matrix of linear time invariant systems , 1973 .

[64]  Chandler Davis Explicit functional calculus , 1973 .

[65]  C. Pao A further remark on the logarithmic derivatives of a square matrix , 1973 .

[66]  E. Saff On the degree of best rational approximation to the exponential function , 1973 .

[67]  C. V. Pao Logarithmic derivates of a square matrix , 1973 .

[68]  A. Bradsuaw The eigenstructure of sampled-data systems with confluent eigenvalues , 1974 .

[69]  I. C. Göknar On the evaluation of constituent matrices , 1974 .

[70]  J. Cavendish On the Norm of a Matrix Exponential , 1974 .

[71]  R. Atherton,et al.  On evaluation of the derivative of the matrix exponential function , 1975 .

[72]  Richard S. Varga,et al.  On the zeros and poles of Padé approximants toez , 1975 .

[73]  J. D. Lawson,et al.  Generalized Runge-Kutta Processes for Stiff Initial-value Problems† , 1975 .

[74]  Edward P. Fulmer Computation of the Matrix Exponential , 1975 .

[75]  S. P. Nørsett C-Polynomials for rational approximation to the exponential function , 1975 .

[76]  L. Shampine,et al.  Computer solution of ordinary differential equations : the initial value problem , 1975 .

[77]  D. M. Trujillo The direct numerical integration of linear matrix differential equations using pade approximations , 1975 .

[78]  Emeric Deutsch On matrix norms and logarithmic norms , 1975 .

[79]  L. Bahar,et al.  Matrix exponential approach to dynamic response , 1975 .

[80]  I. Kolodner On exp(tA) with A satisfying a polynomial , 1975 .

[81]  C. Standish Truncated taylor series approximation to the state transition matrix of a continuous parameter finite Markov chain , 1975 .

[82]  A. Caglayan,et al.  An algorithm for the weighting matrices in the sampled-data optimal linear regulator problem , 1976 .

[83]  D. L. Powers On the eigenstructure of the matrix exponential , 1976 .

[84]  B. Parlett A recurrence among the elements of functions of triangular matrices , 1976 .

[85]  J. L. Siemieniuch Properties of certain rational approximations toe−z , 1976 .

[86]  Michael A. Malcolm,et al.  Computer methods for mathematical computations , 1977 .

[87]  B. Kågström Bounds and perturbation bounds for the matrix exponential , 1977 .

[88]  C. Loan The Sensitivity of the Matrix Exponential , 1977 .

[89]  R. Ward Numerical Computation of the Matrix Exponential with Accuracy Estimate , 1977 .

[90]  C. Loan Computing integrals involving the matrix exponential , 1978 .

[91]  Bo Kågström,et al.  An Algorithm for Numerical Computation of the Jordan Normal Form of a Complex Matrix , 1980, TOMS.