Piezotronics and piezo-phototronics based on a-axis nano/microwires: fundamentals and applications

One-dimensional semiconductors with wurtzite structure, such as GaN, ZnO and CdS nano/ microwires, exhibit superior semiconductor, piezoelectric and mechanical properties, making them excellent candidates for novel electronic, opto-electronic devices and integrated systems. More importantly, the coupling between piezoelectric polarization and semiconductor properties (including electric transport and photoexcitation) gives rise to unique and unprecedented physical characteristics and has led to emerging fields of piezotronics and piezo-phototronics. On the basis of the extensive studies in c-axis semiconductor nano/microwires, piezotronics and piezo-phototronics based on a-axis nano/microwires have further been explored and demonstrated recently. We review both the fundamental progresses and developed applications of piezotronics and piezo-phototronics based on a-axis nano/microwires, which further improve the theoretical framework and expand the practical applications of piezotronics and piezophototronics in functional nanodevices and nanosystems.

[1]  Heath Hofmann,et al.  Adaptive piezoelectric energy harvesting circuit for wireless, remote power supply , 2001 .

[2]  Zhong Lin Wang,et al.  Piezotronics and piezo-phototronics—fundamentals and applications , 2014 .

[3]  Yong Ding,et al.  Piezotronic effect in solution-grown p-type ZnO nanowires and films. , 2013, Nano letters.

[4]  Y. Liu,et al.  Piezo‐Phototronic UV/Visible Photosensing with Optical‐Fiber–Nanowire Hybridized Structures , 2015, Advanced materials.

[5]  C. Brabec,et al.  Plastic Solar Cells , 2001 .

[6]  Yicheng Lu,et al.  Integrated ZnO nanotips on GaN light emitting diodes for enhanced emission efficiency , 2007 .

[7]  Caofeng Pan,et al.  Enhanced emission intensity of vertical aligned flexible ZnO nanowire/p-polymer hybridized LED array by piezo-phototronic effect , 2015 .

[8]  Zhong Lin Wang,et al.  Enhancing sensitivity of a single ZnO micro-/nanowire photodetector by piezo-phototronic effect. , 2010, ACS nano.

[9]  G. A. Slack,et al.  Some effects of oxygen impurities on AlN and GaN , 2002 .

[10]  T. Moustakas,et al.  Electron transport mechanism in gallium nitride , 1993 .

[11]  Nuggehalli M. Ravindra,et al.  Temperature dependence of the energy gap in semiconductors , 1979 .

[12]  Robert Puers,et al.  Fabrication, modelling and characterization of MEMS piezoelectric vibration harvesters , 2008 .

[13]  Guang Zhu,et al.  Gallium nitride nanowire based nanogenerators and light-emitting diodes. , 2012, ACS nano.

[14]  Zhong Lin Wang The new field of nanopiezotronics , 2007 .

[15]  Qing Yang,et al.  Fundamental theories of piezotronics and piezo-phototronics , 2015 .

[16]  Zhong Lin Wang,et al.  Enhanced Luminescence Performance of Quantum Wells by Coupling Piezo-Phototronic with Plasmonic Effects. , 2016, ACS nano.

[17]  Zhong Lin Wang,et al.  Piezoelectric gated diode of a single zno nanowire , 2007 .

[18]  Wenzhuo Wu,et al.  Piezotronic nanowire-based resistive switches as programmable electromechanical memories. , 2011, Nano letters.

[19]  Zhong‐Lin Wang,et al.  Progress in Piezotronics and Piezo‐Phototronics , 2012, Advanced materials.

[20]  Zhong Lin Wang,et al.  High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array , 2013, Nature Photonics.

[21]  Zhong Lin Wang,et al.  Erratum: “Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor” [J. Appl. Phys. 105, 113707 (2009)] , 2009 .

[22]  S. Denbaars,et al.  AlN/GaN and (Al,Ga)N/AlN/GaN two-dimensional electron gas structures grown by plasma-assisted molecular-beam epitaxy , 2001 .

[23]  Zhong Lin Wang From nanogenerators to piezotronics—A decade-long study of ZnO nanostructures , 2012 .

[24]  R. Dimitrov,et al.  Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures , 2000 .

[25]  Takeshi Yamada,et al.  Piezoelectricity of a high‐content lead zirconate titanate/polymer composite , 1982 .

[26]  Caofeng Pan,et al.  Piezo‐Phototronic Effect of CdSe Nanowires , 2012, Advanced materials.

[27]  Yan Zhang,et al.  Optimizing the power output of a ZnO photocell by piezopotential. , 2010, ACS nano.

[28]  S. Dunn,et al.  Photochemistry on a polarisable semi-conductor: what do we understand today? , 2009, Journal of Materials Science.

[29]  Zheng Zhang,et al.  Strain-modulation and service behavior of Au–MgO–ZnO ultraviolet photodetector by piezo-phototronic effect , 2015, Nano Research.

[30]  Zhong Lin Wang,et al.  Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire. , 2009, Nano letters.

[31]  Li-Wei Tu,et al.  Effects of free carriers on piezoelectric nanogenerators and piezotronic devices made of GaN nanowire arrays. , 2014, Small.

[32]  K. Tseng,et al.  Smart piezoelectric transducers for in situ health monitoring of concrete , 2004 .

[33]  Charles M. Lieber,et al.  Ge/Si nanowire heterostructures as high-performance field-effect transistors , 2006, Nature.

[34]  Yen-Yu Chen,et al.  Self-powered n-MgxZn1-xO/p-Si photodetector improved by alloying-enhanced piezopotential through piezo-phototronic effect , 2015 .

[35]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[36]  Zhiyuan Gao,et al.  Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor. , 2009, Journal of applied physics.

[37]  R. Marschall,et al.  Semiconductor Composites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity , 2014 .

[38]  Simiao Niu,et al.  Piezotronic effect enhanced performance of Schottky-contacted optical, gas, chemical and biological nanosensors , 2015 .

[39]  Zhong Lin Wang,et al.  High performance of ZnO nanowire protein sensors enhanced by the piezotronic effect , 2013 .

[40]  Zhong Lin Wang,et al.  Influence of external electric field on piezotronic effect in ZnO nanowires , 2015, Nano Research.

[41]  Zhong Lin Wang,et al.  Piezo-phototronic effect enhanced visible/UV photodetector of a carbon-fiber/ZnO-CdS double-shell microwire. , 2013, ACS nano.

[42]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[43]  Charles M. Lieber,et al.  Single nanowire photovoltaics. , 2009, Chemical Society reviews.

[44]  Hiroaki Imai,et al.  Growth conditions for wurtzite zinc oxide films in aqueous solutions , 2002 .

[45]  Xiuling Li,et al.  Scalable Monolithically Grown AlGaAs–GaAs Planar Nanowire High-Electron-Mobility Transistor , 2011, IEEE Electron Device Letters.

[46]  Marek Osinski,et al.  Self-consistent calculation of current self-distribution effect in GaAs-AlGaAs oxide-confined VCSELs , 2003 .

[47]  Fang Zhang,et al.  Enhanced Performance of Flexible ZnO Nanowire Based Room‐Temperature Oxygen Sensors by Piezotronic Effect , 2013, Advanced materials.

[48]  Qing Yang,et al.  Progress in Piezo‐Phototronic‐Effect‐Enhanced Light‐Emitting Diodes and Pressure Imaging , 2016, Advanced materials.

[49]  Lu Dong,et al.  Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting , 2006, Microelectron. J..

[50]  James S. Speck,et al.  POLARIZATION-INDUCED CHARGE AND ELECTRON MOBILITY IN ALGAN/GAN HETEROSTRUCTURES GROWN BY PLASMA-ASSISTED MOLECULAR-BEAM EPITAXY , 1999 .

[51]  S. Denbaars,et al.  Metalorganic chemical vapor deposition of high mobility AlGaN/GaN heterostructures , 1999 .

[52]  S. J. Gross,et al.  Lead-zirconate-titanate-based piezoelectric micromachined switch , 2003 .

[53]  Yong Ding,et al.  Piezo-phototronic Effect Enhanced UV/Visible Photodetector Based on Fully Wide Band Gap Type-II ZnO/ZnS Core/Shell Nanowire Array. , 2015, ACS nano.

[54]  W. J. Moore,et al.  Identification of Si and O donors in hydride-vapor-phase epitaxial GaN , 2001 .

[55]  Zhong‐Lin Wang,et al.  Piezophototronic Effect in Single‐Atomic‐Layer MoS2 for Strain‐Gated Flexible Optoelectronics , 2016, Advanced materials.

[56]  Caofeng Pan,et al.  Temperature Dependence of the Piezophototronic Effect in CdS Nanowires , 2015 .

[57]  Zhong Lin Wang,et al.  Effective piezo-phototronic enhancement of solar cell performance by tuning material properties , 2013 .

[58]  Yong Ding,et al.  Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. , 2008, Nature materials.

[59]  Yong Ding,et al.  Piezo-phototronic effect enhanced visible and ultraviolet photodetection using a ZnO-CdS core-shell micro/nanowire. , 2012, ACS nano.

[60]  E. E. Havinga,et al.  Temperature Dependence of Dielectric Constants of Cubic Ionic Compounds , 1963 .

[61]  Zhong Lin Wang,et al.  Microfibre–nanowire hybrid structure for energy scavenging , 2009, Nature.

[62]  Zhong Lin Wang,et al.  Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics , 2016 .

[63]  Ruomeng Yu,et al.  Temperature Dependence of the Piezotronic and Piezophototronic Effects in a‐axis GaN Nanobelts , 2015, Advanced materials.

[64]  Zhong Lin Wang,et al.  Piezotronic Effect in Strain-Gated Transistor of a-Axis GaN Nanobelt. , 2015, ACS nano.

[65]  U. Mishra,et al.  AlGaN/GaN HEMTs-an overview of device operation and applications , 2002, Proc. IEEE.

[66]  James J. Coleman,et al.  Metalorganic chemical vapor deposition , 1988 .

[67]  Charles M. Lieber,et al.  Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors. , 2006, Nano letters.

[68]  Yan Zhang,et al.  Theory of Piezo‐Phototronics for Light‐Emitting Diodes , 2012, Advanced materials.

[69]  P. Bhattacharya,et al.  Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy. , 2010, Nano letters.

[70]  Eicke R. Weber,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers. , 2001 .

[71]  Zhong Lin Wang,et al.  Enhancing light emission of ZnO microwire-based diodes by piezo-phototronic effect. , 2011, Nano letters.

[72]  Zhong Lin Wang,et al.  Tuning Light Emission of a Pressure-Sensitive Silicon/ZnO Nanowires Heterostructure Matrix through Piezo-phototronic Effects. , 2016, ACS nano.

[73]  Charles M. Lieber,et al.  High Performance Silicon Nanowire Field Effect Transistors , 2003 .

[74]  Y. Liu,et al.  Quantitative fitting of nonlinear current-voltage curves and parameter retrieval of semiconducting nanowire, nanotube and nanoribbon devices. , 2008, Journal of nanoscience and nanotechnology.

[75]  E. Crawley,et al.  Use of piezoelectric actuators as elements of intelligent structures , 1987 .

[76]  Youfan Hu,et al.  Designing the electric transport characteristics of ZnO micro/nanowire devices by coupling piezoelectric and photoexcitation effects. , 2010, ACS nano.

[77]  A. Di Carlo,et al.  Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs , 2001 .

[78]  V. Giurgiutiu Tuned Lamb Wave Excitation and Detection with Piezoelectric Wafer Active Sensors for Structural Health Monitoring , 2005 .

[79]  Yifei Zhang,et al.  Charge control and mobility studies for an AlGaN/GaN high electron mobility transistor , 1999 .

[80]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[81]  K. Lee,et al.  Depletion width engineering via surface modification for high performance semiconducting piezoelectric nanogenerators , 2014 .

[82]  J. Suehle,et al.  The large-scale integration of high-performance silicon nanowire field effect transistors. , 2009, Nanotechnology.

[83]  Zhong Lin Wang,et al.  Temperature dependence of the piezotronic effect in ZnO nanowires. , 2013, Nano letters.

[84]  Mingzeng Peng,et al.  High-resolution dynamic pressure sensor array based on piezo-phototronic effect tuned photoluminescence imaging. , 2015, ACS nano.

[85]  C. I. Tseng,et al.  Distributed piezoelectric sensor/actuator design for dynamic measurement/control of distributed parameter systems: A piezoelectric finite element approach , 1990 .

[86]  Zhong Lin Wang,et al.  Solution-derived ZnO homojunction nanowire films on wearable substrates for energy conversion and self-powered gesture recognition. , 2014, Nano letters.

[87]  Yue Zhang,et al.  Influence of the carrier concentration on the piezotronic effect in a ZnO/Au Schottky junction. , 2015, Nanoscale.

[88]  Lorenzo Faraone,et al.  A quasi-two-dimensional charge transport model of AlGaN/GaN high electron mobility transistors (HEMTs) , 2005 .

[89]  Sangsig Kim,et al.  Enhancement of Trap-Assisted Green Electroluminescence Efficiency in ZnO/SiO2/Si Nanowire Light-Emitting Diodes on Bendable Substrates by Piezophototronic Effect. , 2016, ACS applied materials & interfaces.

[90]  Jian Shi,et al.  Band Structure Engineering at Heterojunction Interfaces via the Piezotronic Effect , 2012, Advanced materials.

[91]  Takashi Mukai,et al.  Surface-plasmon-enhanced light emitters based on InGaN quantum wells , 2004, Nature materials.

[92]  Zhong‐Lin Wang,et al.  Strain‐Gated Piezotronic Logic Nanodevices , 2010, Advanced materials.

[93]  Seong-Ju Park,et al.  Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface , 2003 .

[94]  Zhong‐Lin Wang Preface to the Special Section on Piezotronics , 2012, Advanced materials.

[95]  Zhong Lin Wang,et al.  Optimizing performance of silicon-based p-n junction photodetectors by the piezo-phototronic effect. , 2014, ACS nano.

[96]  John A Rogers,et al.  Nanostructured plasmonic sensors. , 2008, Chemical reviews.

[97]  Zhong Lin Wang,et al.  Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics , 2014, Nature.

[98]  Benxia Li,et al.  Metal/Semiconductor Hybrid Nanostructures for Plasmon‐Enhanced Applications , 2014, Advanced materials.

[99]  J. Joannopoulos,et al.  Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode , 2001 .

[100]  Yong Ding,et al.  Piezo-phototronic effect on electroluminescence properties of p-type GaN thin films. , 2012, Nano letters.

[101]  F. Harris,et al.  Temperature-dependent behavior of confined many-electron systems in the Hartree-Fock approximation , 2011, 1106.4792.

[102]  Ying Liu,et al.  Nanowire Piezo‐phototronic Photodetector: Theory and Experimental Design , 2012, Advanced materials.

[103]  Zhong Lin Wang,et al.  Enhanced ferroelectric-nanocrystal-based hybrid photocatalysis by ultrasonic-wave-generated piezophototronic effect. , 2015, Nano letters.

[104]  Zhong Lin Wang,et al.  Clear Experimental Demonstration of Hole Gas Accumulation in Ge/Si Core-Shell Nanowires. , 2015, ACS nano.

[105]  M. Shur,et al.  Piezoelectric doping and elastic strain relaxation in AlGaN–GaN heterostructure field effect transistors , 1998 .

[106]  T. Lenka,et al.  Self-Consistent Subband Calculations of AlxGa1-xN/(AlN)/GaN-Based High Electron Mobility Transistor , 2010 .

[107]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[108]  Doo Hyeb Yoon,et al.  Self‐Consistent Subband Calculations of AlGaN/GaN Single Heterojunctions , 2002 .

[109]  Zhong-Lin Wang Towards Self‐Powered Nanosystems: From Nanogenerators to Nanopiezotronics , 2008 .

[110]  K. Ikuta,et al.  Miniature cybernetic actuators using piezoelectric device , 1991, [1991] Proceedings. IEEE Micro Electro Mechanical Systems.

[111]  Dongxu Zhao,et al.  Large-scale horizontally aligned ZnO microrod arrays with controlled orientation, periodic distribution as building blocks for chip-in piezo-phototronic LEDs. , 2015, Small.

[112]  Yue Zhang,et al.  Improved Photoresponse Performance of Self-Powered ZnO/Spiro-MeOTAD Heterojunction Ultraviolet Photodetector by Piezo-Phototronic Effect. , 2016, ACS applied materials & interfaces.

[113]  Zhong Lin Wang Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics , 2010 .

[114]  Charles M. Lieber,et al.  Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. , 2005, Nano letters.

[115]  Xudong Wang,et al.  Piezotronic-Enhanced Photoelectrochemical Reactions in Ni(OH)2-Decorated ZnO Photoanodes. , 2015, The journal of physical chemistry letters.

[116]  Il-Kyu Park,et al.  Surface‐Plasmon‐Enhanced Light‐Emitting Diodes , 2008 .

[117]  Miro Zeman,et al.  Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode , 2013, Nature Communications.

[118]  Zhong Lin Wang,et al.  GaN nanobelt-based strain-gated piezotronic logic devices and computation. , 2013, ACS nano.

[119]  Paras N. Prasad,et al.  Efficient Photodetection at IR Wavelengths by Incorporation of PbSe–Carbon‐Nanotube Conjugates in a Polymeric Nanocomposite , 2007 .

[120]  Gerhard M. Sessler,et al.  Piezoelectricity in polyvinylidenefluoride , 1981 .

[121]  Q-Han Park,et al.  Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns , 2005 .

[122]  Zheng Zhang,et al.  Enhanced photoresponse of ZnO nanorods-based self-powered photodetector by piezotronic interface engineering , 2014 .

[123]  C. Fernández Influence of the temperature dependence of anisotropy on the magnetic behavior of nanoparticles , 2005 .

[124]  Yong Ding,et al.  Piezotronic Effect Modulated Heterojunction Electron Gas in AlGaN/AlN/GaN Heterostructure Microwire , 2016, Advanced materials.

[125]  J. Hao,et al.  Tuning of near-infrared luminescence of SrTiO3:Ni2+ thin films grown on piezoelectric PMN-PT via strain engineering , 2014, Scientific Reports.

[126]  Zhong Lin Wang,et al.  Enhanced Cu₂S/CdS coaxial nanowire solar cells by piezo-phototronic effect. , 2012, Nano letters.

[127]  Bong-Joong Kim,et al.  High-performance photoresponsivity and electrical transport of laterally-grown ZnO/ZnS core/shell nanowires by the piezotronic and piezo-phototronic effect , 2016 .

[128]  Caofeng Pan,et al.  Flexible and Controllable Piezo‐Phototronic Pressure Mapping Sensor Matrix by ZnO NW/p‐Polymer LED Array , 2015 .

[129]  C. Lieber,et al.  12 GHz $F_{\rm MAX}$ GaN/AlN/AlGaN Nanowire MISFET , 2009 .

[130]  Marc Aid,et al.  A fully packaged piezoelectric switch with lowvoltage actuation and electrostatic hold , 2010, 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS).

[131]  Caihong Liu,et al.  Flexible Self-Powered GaN Ultraviolet Photoswitch with Piezo-Phototronic Effect Enhanced On/Off Ratio. , 2016, ACS nano.

[132]  Caofeng Pan,et al.  Enhancing Photoresponsivity of Self-Aligned MoS2 Field-Effect Transistors by Piezo-Phototronic Effect from GaN Nanowires. , 2016, ACS nano.