The somatic-visceral subdivision of the embryonic mesoderm is initiated by dorsal gradient thresholds in Drosophila.

The maternal dorsal regulatory gradient initiates the differentiation of the mesoderm, neuroectoderm and dorsal ectoderm in the early Drosophila embryo. Two primary dorsal target genes, snail (sna) and decapentaplegic (dpp), define the limits of the presumptive mesoderm and dorsal ectoderm, respectively. Normally, the sna expression pattern encompasses 18-20 cells in ventral and ventrolateral regions. Here we show that narrowing the sna pattern results in fewer invaginated cells. As a result, the mesoderm fails to extend into lateral regions so that fewer cells come into contact with dpp-expressing regions of the dorsal ectoderm. This leads to a substantial reduction in visceral and cardiac tissues, consistent with recent studies suggesting that dpp induces lateral mesoderm. These results also suggest that the dorsal regulatory gradient defines the limits of inductive interactions between germ layers after gastrulation. We discuss the parallels between the subdivision of the mesoderm and dorsal ectoderm.

[1]  Michael Bate,et al.  dpp induces mesodermal gene expression in Drosophila , 1994, Nature.

[2]  M. Levine,et al.  Uncoupling gastrulation and mesoderm differentiation in the Drosophila embryo. , 1994, The EMBO journal.

[3]  J. Emery,et al.  Dorsal-ventral patterning of the Drosophila embryo depends on a putative negative growth factor encoded by the short gastrulation gene. , 1994, Genes & development.

[4]  M. Levine,et al.  The screw gene encodes a ubiquitously expressed member of the TGF-beta family required for specification of dorsal cell fates in the Drosophila embryo. , 1994, Genes & development.

[5]  Jun Ma,et al.  An HMG-like protein that can switch a transcriptional activator to a repressor , 1994, Nature.

[6]  P. Bjorkman,et al.  Expression and crystallization of a soluble form of Drosophila fasciclin III. , 1994, Journal of molecular biology.

[7]  M. Levine,et al.  Short-range repression permits multiple enhancers to function autonomously within a complex promoter. , 1994, Genes & development.

[8]  C. Rushlow,et al.  The Drosophila dorsal morphogen represses the tolloid gene by interacting with a silencer element , 1994, Molecular and cellular biology.

[9]  M. Levine,et al.  Interactions between dorsal and helix-loop-helix proteins initiate the differentiation of the embryonic mesoderm and neuroectoderm in Drosophila. , 1993, Genes & development.

[10]  M. Bate,et al.  Myogenesis and muscle patterning in Drosophila. , 1993, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie.

[11]  C. Rushlow,et al.  Conversion of a silencer into an enhancer: evidence for a co‐repressor in dorsal‐mediated repression in Drosophila. , 1993, The EMBO journal.

[12]  M. Levine,et al.  Conversion of a dorsal‐dependent silencer into an enhancer: evidence for dorsal corepressors. , 1993, The EMBO journal.

[13]  M. Frasch,et al.  tinman and bagpipe: two homeo box genes that determine cell fates in the dorsal mesoderm of Drosophila. , 1993, Genes & development.

[14]  R. Bodmer The gene tinman is required for specification of the heart and visceral muscles in Drosophila. , 1993, Development.

[15]  J. D. Huang,et al.  The interplay between multiple enhancer and silencer elements defines the pattern of decapentaplegic expression. , 1993, Genes & development.

[16]  Michael Levine,et al.  Binding affinities and cooperative interactions with bHLH activators delimit threshold responses to the dorsal gradient morphogen , 1993, Cell.

[17]  M. Levine,et al.  Regulation of even‐skipped stripe 2 in the Drosophila embryo. , 1992, The EMBO journal.

[18]  K. Anderson,et al.  decapentaplegic acts as a morphogen to organize dorsal-ventral pattern in the Drosophila embryo , 1992, Cell.

[19]  M. Levine,et al.  The dorsal gradient morphogen regulates stripes of rhomboid expression in the presumptive neuroectoderm of the Drosophila embryo. , 1992, Genes & development.

[20]  M. Levine,et al.  Individual dorsal morphogen binding sites mediate activation and repression in the Drosophila embryo. , 1992, The EMBO journal.

[21]  M. Levine,et al.  dorsal-twist interactions establish snail expression in the presumptive mesoderm of the Drosophila embryo. , 1992, Genes & development.

[22]  R. Reuter,et al.  Mechanisms of early Drosophila mesoderm formation. , 1992, Development (Cambridge, England). Supplement.

[23]  R. Britten,et al.  Macromere cell fates during sea urchin development. , 1991, Development.

[24]  D Kosman,et al.  Establishment of the mesoderm-neuroectoderm boundary in the Drosophila embryo. , 1991, Science.

[25]  D Kosman,et al.  The dorsal morphogen gradient regulates the mesoderm determinant twist in early Drosophila embryos. , 1991, Genes & development.

[26]  J. D. Huang,et al.  Functional analysis of the Drosophila twist promoter reveals a dorsal-binding ventral activator region. , 1991, Genes & development.

[27]  M. Leptin twist and snail as positive and negative regulators during Drosophila mesoderm development. , 1991, Genes & development.

[28]  C. Nüsslein-Volhard,et al.  The control of cell fate along the dorsal-ventral axis of the Drosophila embryo. , 1991, Development.

[29]  B. Thisse,et al.  Sequence-specific transactivation of the Drosophila twist gene by the dorsal gene product , 1991, Cell.

[30]  J. Boulay,et al.  The snail gene required for mesoderm formation in Drosophila is expressed dynamically in derivatives of all three germ layers. , 1991, Development.

[31]  R. Steward,et al.  Dorsoventral pattern formation in Drosophila: signal transduction and nuclear targeting. , 1991, Trends in genetics : TIG.

[32]  M. Levine,et al.  The dorsal morphogen is a sequence-specific DNA-binding protein that interacts with a long-range repression element in drosophila , 1991, Cell.

[33]  M. Frasch,et al.  A new Drosophila homeo box gene is expressed in mesodermal precursor cells of distinct muscles during embryogenesis. , 1990, Genes & development.

[34]  M. Bate,et al.  Expression of a MyoD family member prefigures muscle pattern in Drosophila embryos. , 1990, Genes & development.

[35]  Y. Jan,et al.  A new homeobox-containing gene, msh-2, is transiently expressed early during mesoderm formation of Drosophila. , 1990, Development.

[36]  M. Leptin,et al.  Cell shape changes during gastrulation in Drosophila. , 1990, Development.

[37]  C. Rushlow,et al.  Dorsal ventral polarity and pattern formation in the Drosophila embryo. , 1990, Seminars in cell biology.

[38]  M. Levine,et al.  The graded distribution of the dorsal morphogen is initiated by selective nuclear transport in Drosophila , 1989, Cell.

[39]  R. Steward Relocalization of the dorsal protein from the cytoplasm to the nucleus correlates with its function , 1989, Cell.

[40]  C. Nüsslein-Volhard,et al.  A gradient of nuclear localization of the dorsal protein determines dorsoventral pattern in the Drosophila embryo , 1989, Cell.

[41]  M. Levine,et al.  Spatial regulation of zerknüllt: a dorsal-ventral patterning gene in Drosophila. , 1989, Genes & development.

[42]  K. Struhl,et al.  The gradient morphogen bicoid is a concentration-dependent transcriptional activator , 1989, Cell.

[43]  C. Nüsslein-Volhard,et al.  The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner , 1988, Cell.

[44]  P. Simpson,et al.  Mutations and Chromosomal Rearrangements Affecting the Expression of Snail, a Gene Involved in Embryonic Patterning in DROSOPHILA MELANOGASTER. , 1984, Genetics.

[45]  P. Simpson,et al.  Maternal-Zygotic Gene Interactions during Formation of the Dorsoventral Pattern in Drosophila Embryos. , 1983, Genetics.

[46]  M. Bate,et al.  The development of Drosophila melanogaster , 2009 .

[47]  W. A. Johnson,et al.  drifter, a Drosophila POU-domain transcription factor, is required for correct differentiation and migration of tracheal cells and midline glia. , 1995, Genes & development.

[48]  A. Haget Analyse expérimentale des facteurs de la morphogenèse embryonnaire chez le Coléoptère Leptinotarsa , 1953 .