Adaptive neuro-fuzzy inference system-based maximum power point tracking of solar PV modules for fast varying solar radiations

This paper analyses the operation of an adaptive neuro-fuzzy inference system (ANFIS)-based maximum power point tracking (MPPT) for solar photovoltaic (SPV) energy generation system. The MPPT works on the principle of adjusting the voltage of the SPV modules by changing the duty ratio of the boost converter. The duty ratio of the boost converter is calculated for a given solar irradiance and temperature condition by a closed-loop control scheme. The ANFIS is trained to generate maximum power corresponding to the given solar irradiance level and temperature. The response of the ANFIS-based control system is highly precise and offers an extremely fast response. The response time is seen as nearly 1 ms for fast varying cell temperature and 6 ms for fast varying solar irradiance. The simulation is done for fast-changing solar irradiance and temperature conditions. The response of the proposed controller is also presented.

[1]  Abdulaziz Mohamed Saeed Aldobhani,et al.  Maximum power point tracking of PV system using ANFIS prediction and fuzzy logic tracking , 2008 .

[2]  Samir Kouro,et al.  Unidimensional Modulation Technique for Cascaded Multilevel Converters , 2009, IEEE Transactions on Industrial Electronics.

[3]  Xin Li,et al.  A research on photovoltaic energy controlling system with maximum power point tracking , 2002, Proceedings of the Power Conversion Conference-Osaka 2002 (Cat. No.02TH8579).

[4]  Sonia Leva,et al.  A comparative study of MPPT techniques for PV systems , 2008 .

[5]  Haitham Abu-Rub,et al.  Feasibility analysis of solar photovoltaic array cladding on commercial towers in Doha, Qatar – a case study , 2010 .

[6]  Tore Undeland,et al.  Power Electronics: Converters, Applications and Design , 1989 .

[7]  M. A. Elhadidy,et al.  Performance evaluation of hybrid (wind/solar/diesel) power systems , 2002 .

[8]  Soteris A. Kalogirou,et al.  Artificial intelligence techniques for sizing photovoltaic systems: A review , 2009 .

[9]  Y. Anagreh,et al.  Assessment of renewable energy potential, at Aqaba in Jordan , 2010 .

[10]  John Psarras,et al.  Enhancing renewable energy in the Arab States of the Gulf: Constraints & efforts , 2006 .

[11]  F.L.M. Antunes,et al.  An artificial neural network-based real time maximum power tracking controller for connecting a PV system to the grid , 1998, IECON '98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.98CH36200).

[12]  John Psarras,et al.  Renewable energy sources and rationale use of energy development in the countries of GCC: Myth or reality? , 2006 .

[13]  L. Zhang,et al.  Application of radial basis function networks for solar-array modelling and maximum power-point prediction , 2000 .

[14]  Y.S. Boutalis,et al.  New maximum power point tracker for PV arrays using fuzzy controller in close cooperation with fuzzy cognitive networks , 2006, IEEE Transactions on Energy Conversion.

[15]  Suttichai Premrudeepreechacharn,et al.  Solar-array modelling and maximum power point tracking using neural networks , 2003, 2003 IEEE Bologna Power Tech Conference Proceedings,.

[16]  M. Vitelli,et al.  Optimization of perturb and observe maximum power point tracking method , 2005, IEEE Transactions on Power Electronics.

[17]  Gehan A. J. Amaratunga,et al.  Analytic Solution to the Photovoltaic Maximum Power Point Problem , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[18]  B. Khan,et al.  Non Conventional Energy Resources , 2009 .

[19]  A.Hamid Marafia,et al.  Feasibility study of photovoltaic technology in Qatar , 2001 .

[20]  Soteris A. Kalogirou,et al.  Artificial intelligence techniques for photovoltaic applications: A review , 2008 .

[21]  Andres Barrado,et al.  Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems , 2006 .

[22]  R. Teodorescu,et al.  Optimized Maximum Power Point Tracker for fast changing environmental conditions , 2008, 2008 IEEE International Symposium on Industrial Electronics.

[23]  M. E. Ropp,et al.  Comparative study of maximum power point tracking algorithms , 2003 .

[24]  Sami M Kamel,et al.  The economics of hybrid power systems for sustainable desert agriculture in Egypt , 2005 .

[25]  Dezso Sera,et al.  Optimized Maximum Power Point Tracker for Fast-Changing Environmental Conditions , 2008, IEEE Transactions on Industrial Electronics.

[26]  Piazza Leonardo da Vinci,et al.  Energy comparison of MPPT techniques for PV Systems , 2008 .

[27]  G. Furlan,et al.  Non-conventional energy sources , 1982 .

[28]  Takashi Hiyama,et al.  Neural network based estimation of maximum power generation from PV module using environmental information , 1997 .

[29]  R. Messenger,et al.  Photovoltaic Systems Engineering , 2018 .

[30]  Weidong Xiao,et al.  Application of Centered Differentiation and Steepest Descent to Maximum Power Point Tracking , 2007, IEEE Transactions on Industrial Electronics.

[31]  A. Iqbal,et al.  Adaptive neuro-fuzzy inference system based maximum power point tracking of a solar PV module , 2010, 2010 IEEE International Energy Conference.