Numerical methods for hypersingular integrals on the real line

In the present paper the authors propose two numerical methods to approximate Hadamard transforms of the type Hp( f wβ , t) = ∫ = R f (x) (x − t)p+1 wβ (x)d x , where p is a nonnegative integer and wβ (x) = e−|x | β , β > 1, is a Freud weight. One of the procedures employed here is based on a simple tool like the “truncated” Gaussian rule conveniently modified to remove numerical cancellation and overflow phenomena. The second approach is a process of simultaneous approximation of the functions {Hk( f wβ , t)} p k=0. This strategy can be useful in the numerical treatment of hypersingular integral equations. The methods are shown to be numerically stable and convergent and some error estimates in suitable Zygmund-type spaces are proved. Numerical tests confirming the theoretical estimates are given. Comparisons of our methods among them and with other ones available in literature are shown.

[1]  M. C. D. Bonis,et al.  On the simultaneous approximation of a Hilbert transform and its derivatives on the real semiaxis , 2017 .

[2]  D. F. Paget,et al.  The numerical evaluation of Hadamard finite-part integrals , 1981 .

[3]  Maria Carmela De Bonis,et al.  Approximation of the Hilbert Transform on the real line using Hermite zeros , 2001, Math. Comput..

[4]  Gennadi Vainikko,et al.  Hypersingular Integral Equations and Their Applications , 2003 .

[5]  Donatella Occorsio,et al.  A method to evaluate the Hilbert transform on (0,  +∞) , 2011, Appl. Math. Comput..

[6]  A. Frangi,et al.  A direct approach for boundary integral equations with high-order singularities , 2000 .

[7]  Giovanni Monegato,et al.  Numerical evaluation of hypersingular integrals , 1994 .

[8]  V. Totik,et al.  Moduli of smoothness , 1987 .

[9]  Avram Sidi Compact Numerical Quadrature Formulas for Hypersingular Integrals and Integral Equations , 2013, J. Sci. Comput..

[10]  G. Mastroianni,et al.  Markov-Sonin Gaussian rule for singular functions , 2004 .

[11]  Giuseppe Mastroianni,et al.  A Lagrange-type projector on the real line , 2010, Math. Comput..

[12]  M. Diligenti,et al.  Numerical integration schemes for Petrov--Galerkin infinite BEM , 2008 .

[13]  I. Notarangelo Approximation of the Hilbert Transform on the Real Line Using Freud Weights , 2010 .

[14]  Nicola Mastronardi,et al.  Some numerical algorithms to evaluate Hadamard finite-part integrals , 1996 .

[15]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[16]  G. Mastroianni,et al.  Numerical approximation of weakly singular integrals on the half line , 2002 .

[17]  H. R. Kutt On the numerical evaluation of finite-part integrals involving an algebraic singularity , 1975 .

[18]  Aleksandar S. Cvetković,et al.  THE MATHEMATICA PACKAGE \OrthogonalPolynomials" ⁄ , 2004 .

[19]  Giovanni Monegato,et al.  Definitions, properties and applications of finite-part integrals , 2009 .

[20]  Weiwei Sun,et al.  Interpolatory quadrature rules for Hadamard finite-part integrals and their superconvergence , 2007 .

[21]  G. Mastroianni,et al.  Interlacing properties of the zeros of the orthogonal polynomials and approximation of the Hilbert transform , 1995 .

[22]  Nikolaos I. Ioakimidis,et al.  On the uniform convergence of Gaussian quadrature rules for Cauchy principal value integrals and their derivatives , 1985 .

[23]  Giuseppe Mastroianni,et al.  Gaussian rules on unbounded intervals , 2003, J. Complex..

[24]  M. C. D. Bonis,et al.  Approximation of Hilbert and Hadamard transforms on (0 , 2017 .

[25]  Giovanni Monegato,et al.  Truncated Quadrature Rules Over (0, INFINITY) and Nyström-Type Methods , 2003, SIAM J. Numer. Anal..