LOFAR Discovery of a 23.5 s Radio Pulsar

We present the discovery of PSR J0250+5854, a radio pulsar with a spin period of 23.5 s. This is the slowest-spinning radio pulsar known. PSR J0250+5854 was discovered by the LOFAR Tied-Array All-Sky Survey (LOTAAS), an all-northern-sky survey for pulsars and fast transients at a central observing frequency of 135 MHz. We subsequently detected pulsations from the pulsar in the interferometric images of the LOFAR Two-meter Sky Survey, allowing for subarcsecond localization. This, along with a pre-discovery detection 2 years prior, allowed us to measure the spin-period derivative to be s s−1. The observed spin period derivative of PSR J0250+5854 indicates a surface magnetic field strength, characteristic age, and spindown luminosity of G, 13.7 Myr, and erg s−1, respectively, for a dipolar magnetic field configuration. This also places the pulsar beyond the conventional pulsar death line, where radio emission is expected to cease. The spin period of PSR J0250+5854 is similar to those of the high-energy-emitting magnetars and X-ray dim isolated neutron stars (XDINSs). However, the pulsar was not detected by the Swift/X-Ray Telescope in the energy band of 0.3–10 keV, placing a bolometric luminosity limit of erg s−1 for an assumed cm−2 and a temperature of 85 eV (typical of XDINSs). We discuss the implications of the discovery for models of the pulsar death line as well as the prospect of finding more similarly long-period pulsars, including the advantages provided by LOTAAS for this.

[1]  Mauricio Solar,et al.  Astronomical data analysis software and systems , 2018, Astron. Comput..

[2]  J. Hessels,et al.  Single-pulse classifier for the LOFAR Tied-Array All-sky Survey , 2018, Monthly Notices of the Royal Astronomical Society.

[3]  X. Siemens,et al.  The Implementation of a Fast-folding Pipeline for Long-period Pulsar Searching in the PALFA Survey , 2018, The Astrophysical Journal.

[4]  N. Rea,et al.  Magnetars: A Short Review and Some Sparse Considerations , 2018, Timing Neutron Stars: Pulsations, Oscillations and Explosions.

[5]  J. Hessels,et al.  Ensemble candidate classification for the LOTAAS pulsar survey , 2018 .

[6]  L. Bester,et al.  Faceting for direction-dependent spectral deconvolution , 2017, 1712.02078.

[7]  T. W. Shimwell,et al.  An Automated Scalable Framework for Distributing Radio Astronomy Processing Across Clusters and Clouds , 2017 .

[8]  Cui Zhu,et al.  Dependence of pulsar death line on the equation of state , 2017, 1708.05494.

[9]  J. van Leeuwen,et al.  On the Origin of the Bi-drifting Subpulse Phenomenon in Pulsars , 2017, 1707.05046.

[10]  J. Hessels,et al.  Scattering analysis of LOFAR pulsar observations , 2017, 1706.04205.

[11]  D. Champion,et al.  An investigation of pulsar searching techniques with the fast folding algorithm , 2017, 1703.05581.

[12]  J. Lattimer Neutron stars are gold mines , 2017 .

[13]  Aris Karastergiou,et al.  Pulsar braking and the P–$\dot{P}$ diagram , 2017, 1702.03616.

[14]  A. Karastergiou,et al.  A framework for assessing the performance of pulsar search pipelines , 2016, 1611.09756.

[15]  T. J. Dijkema,et al.  The LOFAR Two-metre Sky Survey. I. Survey description and preliminary data release , 2016, 1611.02700.

[16]  R. N. Manchester,et al.  A NEW ELECTRON-DENSITY MODEL FOR ESTIMATION OF PULSAR AND FRB DISTANCES , 2016, 1610.09448.

[17]  A. J. van der Horst,et al.  MAGNETAR-LIKE X-RAY BURSTS FROM A ROTATION-POWERED PULSAR, PSR J1119–6127 , 2016, 1608.07133.

[18]  V. Kaspi,et al.  A MAGNETAR-LIKE OUTBURST FROM A HIGH-B RADIO PULSAR , 2016, 1608.01007.

[19]  M. Bachetti,et al.  MAGNETAR-LIKE ACTIVITY FROM THE CENTRAL COMPACT OBJECT IN THE SNR RCW103 , 2016, 1607.04107.

[20]  P. Weltevrede Investigation of the bi-drifting subpulses of radio pulsar B1839-04 utilising the open-source data-analysis project PSRSALSA , 2016, 1605.06413.

[21]  T. Ensslin,et al.  LOFAR 150-MHz observations of the Boötes field: catalogue and source counts , 2016, 1605.01531.

[22]  K. Nandra,et al.  Second ROSAT all-sky survey (2RXS) source catalogue , 2016, 1609.09244.

[23]  M. Mclaughlin,et al.  NEW DISCOVERIES FROM THE ARECIBO 327 MHz DRIFT PULSAR SURVEY RADIO TRANSIENT SEARCH , 2016, 1603.01151.

[24]  T. J. Dijkema,et al.  LOFAR FACET CALIBRATION , 2016, 1601.05422.

[25]  R. Karuppusamy,et al.  LEAP: the large European array for pulsars , 2015, 1511.06597.

[26]  H. Falcke,et al.  A LOFAR census of non-recycled pulsars: average profiles, dispersion measures, flux densities, and spectra , 2015, 1511.01767.

[27]  A. Noutsos,et al.  A LOFAR census of millisecond pulsars , 2015, 1508.02948.

[28]  X. Siemens,et al.  ARECIBO PULSAR SURVEY USING ALFA. IV. MOCK SPECTROMETER DATA ANALYSIS, SURVEY SENSITIVITY, AND THE DISCOVERY OF 40 PULSARS , 2015, 1504.02294.

[29]  J. K. Swiggum,et al.  DISCOVERY AND FOLLOW-UP OF ROTATING RADIO TRANSIENTS WITH THE GREEN BANK AND LOFAR TELESCOPES , 2015, 1503.05170.

[30]  O. Smirnov,et al.  Radio interferometric gain calibration as a complex optimization problem , 2015, 1502.06974.

[31]  A. Noutsos,et al.  The LOFAR pilot surveys for pulsars and fast radio transients , 2014, 1408.0411.

[32]  A. J. Ford,et al.  THE GREEN BANK NORTHERN CELESTIAL CAP PULSAR SURVEY. I. SURVEY DESCRIPTION, DATA ANALYSIS, AND INITIAL RESULTS , 2014, 1406.5214.

[33]  Bing Zhang,et al.  RADIO EFFICIENCY OF PULSARS , 2014, 1402.0228.

[34]  R. Perna,et al.  Unifying the observational diversity of isolated neutron stars via magneto-thermal evolution models. , 2013, 1306.2156.

[35]  S. Johnston,et al.  Radio properties of the magnetar near sagittarius A* from observations with the Australia telescope compact array , 2013, 1305.3036.

[36]  V. Kaspi,et al.  THE CORRELATION BETWEEN DISPERSION MEASURE AND X-RAY COLUMN DENSITY FROM RADIO PULSARS , 2013, 1303.5170.

[37]  D. Lorimer,et al.  The pulsar spectral index distribution , 2013, 1302.2053.

[38]  A. D. Jong,et al.  Wide-band simultaneous observations of pulsars: disentangling dispersion measure and profile variations , 2012, Astronomy & Astrophysics.

[39]  M. C. Toribio,et al.  LOFAR: The LOw-Frequency ARray , 2013, 1305.3550.

[40]  Maura McLaughlin,et al.  Rotating Radio Transients: new discoveries, timing solutions and musings , 2011 .

[41]  A. Noutsos,et al.  Observing pulsars and fast transients with LOFAR , 2011, 1104.1577.

[42]  X‐ray and optical observations of the closest isolated radio pulsar★ , 2011, 1101.5100.

[43]  M. Bailes,et al.  DSPSR: Digital Signal Processing Software for Pulsar Astronomy , 2010, Publications of the Astronomical Society of Australia.

[44]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[45]  A. Harding,et al.  PULSAR PAIR CASCADES IN A DISTORTED MAGNETIC DIPOLE FIELD , 2010, 1012.0451.

[46]  S. Burke-Spolaor,et al.  A RADIO-LOUD MAGNETAR IN X-RAY QUIESCENCE , 2010, 1007.1052.

[47]  D. Thompson,et al.  EIGHT γ-RAY PULSARS DISCOVERED IN BLIND FREQUENCY SEARCHES OF FERMI LAT DATA , 2010, 1006.2134.

[48]  M. Mclaughlin,et al.  Further searches for Rotating Radio Transients in the Parkes Multi-beam Pulsar Survey , 2009, 0909.1924.

[49]  S. B. Popov,et al.  ERRATUM: “NEW LIMITS ON RADIO EMISSION FROM X-RAY DIM ISOLATED NEUTRON STARS” (2009, ApJ, 702, 692) , 2009, 0907.0054.

[50]  S. Popov,et al.  NEW LIMITS ON RADIO EMISSION FROM X-RAY DIM ISOLATED NEUTRON STARS , 2009 .

[51]  R. Turolla Isolated Neutron Stars: The Challenge of Simplicity , 2009 .

[52]  Eric Sessoms,et al.  Data Vault: providing simple web access to NRAO data archives , 2008, Astronomical Telescopes + Instrumentation.

[53]  J. Leeuwen,et al.  Finding pulsars with LOFAR , 2007, 0710.0675.

[54]  F. Camilo,et al.  1E 1547.0–5408: A Radio-emitting Magnetar with a Rotation Period of 2 Seconds , 2007, 0708.0002.

[55]  F. Haberl The magnificent seven: magnetic fields and surface temperature distributions , 2006, astro-ph/0609066.

[56]  R. Manchester,et al.  tempo2, a new pulsar timing package ¿ II. The timing model and precision estimates , 2006, astro-ph/0607664.

[57]  D. Helfand,et al.  Transient pulsed radio emission from a magnetar , 2006, Nature.

[58]  R. Manchester,et al.  TEMPO2, a new pulsar-timing package - I. An overview , 2006, astro-ph/0603381.

[59]  A. Spitkovsky Time-dependent Force-free Pulsar Magnetospheres: Axisymmetric and Oblique Rotators , 2006, astro-ph/0603147.

[60]  S. Ransom,et al.  A Radio Pulsar Spinning at 716 Hz , 2006, Science.

[61]  R. N. Manchester,et al.  Transient radio bursts from rotating neutron stars , 2005, Nature.

[62]  R. Manchester,et al.  The Australia Telescope National Facility Pulsar Catalogue , 2005 .

[63]  R. Manchester,et al.  psrchive and psrfits: An Open Approach to Radio Pulsar Data Storage and Analysis , 2004, Publications of the Astronomical Society of Australia.

[64]  D. Watson,et al.  The Swift X-Ray Telescope , 1999, SPIE Optics + Photonics.

[65]  R. Manchester,et al.  The Australia Telescope National Facility Pulsar Catalogue , 2003, astro-ph/0309219.

[66]  D. Frail,et al.  The Nearby Neutron Star RX J0720.4–3125 from Radio to X-Rays , 2003, astro-ph/0303126.

[67]  S. Johnston,et al.  Radio observations of two isolated neutron stars: RX J0720.4 - 3125 and RX J0806.4 - 4132 , 2003, astro-ph/0302502.

[68]  J. Kijak,et al.  Radio emission altitude in pulsars , 2003 .

[69]  D. Mitra,et al.  Toward an Empirical Theory of Pulsar Emission. VII. On the Spectral Behavior of Conal Beam Radii and Emission Heights , 2002, astro-ph/0205356.

[70]  S. Eikenberry,et al.  Fourier Techniques for Very Long Astrophysical Time-Series Analysis , 2002, astro-ph/0204349.

[71]  D. Mitra,et al.  Vacuum Gaps in Pulsars and PSR J2144–3933 , 2000, astro-ph/0010603.

[72]  M. Baring,et al.  Photon Splitting and Pair Creation in Highly Magnetized Pulsars , 2000, astro-ph/0010400.

[73]  Bing Zhang,et al.  Radio Pulsar Death Line Revisited: Is PSR J2144–3933 Anomalous? , 2000, The Astrophysical journal.

[74]  M. Baring,et al.  Radio-Quiet Pulsars with Ultrastrong Magnetic Fields , 1998, astro-ph/9809115.

[75]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[76]  A. Harding,et al.  Particle Acceleration Zones above Pulsar Polar Caps: Electron and Positron Pair Formation Fronts , 1998, astro-ph/9805132.

[77]  Astrophysics,et al.  The Characteristics of Millisecond Pulsar Emission. I. Spectra, Pulse Shapes, and the Beaming Fraction , 1998, astro-ph/9801177.

[78]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[79]  Toward the Quasi-Steady State Electrodynamics of a Neutron Star , 1997 .

[80]  J. Han,et al.  Three Modes of Pulsar Inner Gap , 1997 .

[81]  Kaiyou Chen,et al.  Pulsar death lines and death valley , 1993 .

[82]  A. Muslimov,et al.  General relativistic electric potential drops above pulsar polar caps , 1992 .

[83]  D. Burrows,et al.  Determination of Confidence Limits for Experiments with Low Numbers of Counts , 1991 .

[84]  J. Dickey,et al.  H I in the Galaxy , 1990 .

[85]  R. Chevalier,et al.  The intrinsic luminosity and initial period of pulsars , 1989 .

[86]  Australia.,et al.  The shape of pulsar radio beams , 1988, astro-ph/0010538.

[87]  K. Lawson,et al.  Variations in the spectral index of the galactic radio continuum emission in the northern hemisphere , 1987 .

[88]  J. Arons,et al.  Pair formation above pulsar polar caps: Structure of the low altitude acceleration zone , 1979 .

[89]  Ruderman,et al.  Theory of pulsars: polar gaps, sparks, and coherent microwave radiation , 1975 .

[90]  D. Staelin Fast folding algorithm for detection of periodic pulse trains , 1969 .