An Introduction to Data Assimilation and Predictability in Geomagnetism

Data assimilation in geomagnetism designates the set of inverse methods for geomagnetic data analysis which rely on an underlying prognostic numerical model of core dynamics. Within that framework, the time-dependency of the magnetohydrodynamic state of the core need no longer be parameterized: The model trajectory (and the secular variation it generates at the surface of the Earth) is controlled by the initial condition, and possibly some other static control parameters. The primary goal of geomagnetic data assimilation is then to combine in an optimal fashion the information contained in the database of geomagnetic observations and in the dynamical model, by adjusting the model trajectory in order to provide an adequate fit to the data.The recent developments in that emerging field of research are motivated mostly by the increase in data quality and quantity during the last decade, owing to the ongoing era of magnetic observation of the Earth from space, and by the concurrent progress in the numerical description of core dynamics.In this article we review briefly the current status of our knowledge of core dynamics, and elaborate on the reasons which motivate geomagnetic data assimilation studies, most notably (a) the prospect to propagate the current quality of data backward in time to construct dynamically consistent historical core field and flow models, (b) the possibility to improve the forecast of the secular variation, and (c) on a more fundamental level, the will to identify unambiguously the physical mechanisms governing the secular variation. We then present the fundamentals of data assimilation (in its sequential and variational forms) and summarize the observations at hand for data assimilation practice. We present next two approaches to geomagnetic data assimilation: The first relies on a three-dimensional model of the geodynamo, and the second on a quasi-geostrophic approximation. We also provide an estimate of the limit of the predictability of the geomagnetic secular variation based upon a suite of three-dimensional dynamo models. We finish by discussing possible directions for future research, in particular the assimilation of laboratory observations of liquid metal analogs of Earth’s core.

[1]  Gary A. Glatzmaier,et al.  Numerical Simulations of Stellar Convective Dynamos. I. The Model and Method , 1984 .

[2]  Joaquim Ballabrera-Poy,et al.  Response to the discussion on “4-D-Var or EnKF?” by Nils Gustafsson , 2007 .

[3]  Daniel Brito,et al.  Rotating spherical Couette flow in a dipolar magnetic field: experimental study of magneto-inertial waves , 2008, Journal of Fluid Mechanics.

[4]  Mioara Mandea,et al.  Ørsted Initial Field Model , 2000 .

[5]  Fabio Donadini,et al.  GEOMAGIA50: An archeointensity database with PHP and MySQL , 2008 .

[6]  Arnaud Chulliat,et al.  Magnetic flux expulsion from the core as a possible cause of the unusually large acceleration of the north magnetic pole during the 1990s , 2010 .

[7]  Nils Olsen,et al.  The 10th generation international geomagnetic reference field , 2005 .

[8]  Nils Gustafsson,et al.  Discussion on ‘4D-Var or EnKF?’ , 2007 .

[9]  P. Courtier,et al.  Variational Assimilation of Meteorological Observations With the Adjoint Vorticity Equation. I: Theory , 2007 .

[10]  Philippe Courtier,et al.  Variational Methods (gtSpecial IssueltData Assimilation in Meteology and Oceanography: Theory and Practice) , 1997 .

[11]  O. Talagrand,et al.  A Posteriori Validation of Assimilation Algorithms , 2003 .

[12]  Y. Sasaki SOME BASIC FORMALISMS IN NUMERICAL VARIATIONAL ANALYSIS , 1970 .

[13]  Nils Olsen,et al.  Observation of magnetic diffusion in the Earth's outer core from Magsat, Ørsted, and CHAMP data , 2010 .

[14]  A. Bennett,et al.  Inverse Modeling of the Ocean and Atmosphere , 2002 .

[15]  Jean-Michel Brankart,et al.  Implementation of a reduced rank square-root smoother for high resolution ocean data assimilation , 2010 .

[16]  Paul H. Roberts,et al.  A three-dimensional self-consistent computer simulation of a geomagnetic field reversal , 1995, Nature.

[17]  Philip W. Livermore,et al.  The construction of exact Taylor states. II: The influence of an inner core , 2010 .

[18]  M. Ghil,et al.  Data assimilation in meteorology and oceanography , 1991 .

[19]  Qinya Liu,et al.  Tomography, Adjoint Methods, Time-Reversal, and Banana-Doughnut Kernels , 2004 .

[20]  Philip W. Livermore,et al.  The construction of exact Taylor states. I: The full sphere , 2009 .

[21]  Mioara Mandea,et al.  Modelling the Earth’s core magnetic field under flow constraints , 2010 .

[22]  G. Evensen Data Assimilation: The Ensemble Kalman Filter , 2006 .

[23]  P. Olson,et al.  Experiments on Core Dynamics , 2007 .

[24]  Andreas Fichtner,et al.  The adjoint method in seismology – I. Theory , 2006 .

[25]  Albert Tarantola,et al.  Theoretical background for the inversion of seismic waveforms including elasticity and attenuation , 1988 .

[26]  Gauthier Hulot,et al.  Earth's dynamo limit of predictability , 2010 .

[27]  Gauthier Hulot,et al.  Length of day decade variations, torsional oscillations and inner core superrotation: evidence from recovered core surface zonal flows , 2000 .

[28]  Gauthier Hulot,et al.  Thermochemical flows couple the Earth's inner core growth to mantle heterogeneity , 2008, Nature.

[29]  Herbert Meyers,et al.  A Profile of the Geomagnetic Model User and Abuser , 1990 .

[30]  Mioara Mandea,et al.  The 9th-Generation International Geomagnetic Reference Field , 2003 .

[31]  Arlindo da Silva,et al.  Data assimilation in the presence of forecast bias , 1998 .

[32]  Don Liu,et al.  Observing system simulation experiments in geomagnetic data assimilation , 2006 .

[33]  H. Hersbach,et al.  Application of the adjoint of the WAM model to inverse wave modeling , 1998 .

[34]  Alexandre Fournier,et al.  A case for variational geomagnetic data assimilation: insights from a one-dimensional, nonlinear, and sparsely observed MHD system , 2007, 0705.1777.

[35]  Walter H. F. Smith,et al.  Free software helps map and display data , 1991 .

[36]  Catherine Constable,et al.  Is Earth's magnetic field reversing? , 2006 .

[37]  Kathy Whaler,et al.  Spherical harmonic analysis of the geomagnetic field: an example of a linear inverse problem , 1981 .

[38]  Pascal Gegout,et al.  Atmospheric and oceanic excitation of length-of-day variations during 1980–2000 , 2004 .

[39]  Gauthier Hulot,et al.  An estimate of average lower mantle conductivity by wavelet analysis of geomagnetic jerks , 1999 .

[40]  Y. Trémolet Accounting for an imperfect model in 4D‐Var , 2006 .

[41]  Ulrich R. Christensen,et al.  Power requirement of the geodynamo from ohmic losses in numerical and laboratory dynamos , 2004, Nature.

[42]  Catherine Constable,et al.  Continuous geomagnetic field models for the past 7 millennia: 2. CALS7K , 2005 .

[43]  Lewis F. Richardson,et al.  Weather Prediction by Numerical Process , 1922 .

[44]  Zigang Wei,et al.  Prediction of geomagnetic field with data assimilation: a candidate secular variation model for IGRF-11 , 2010 .

[45]  Zhibin Sun,et al.  MoSST-DAS: The First Generation Geomagnetic Data Assimilation Framework , 2008 .

[46]  Thierry Penduff,et al.  A four-year eddy-permitting assimilation of sea-surface temperature and altimetric data in the South Atlantic Ocean , 2002 .

[47]  Richard Holme,et al.  Large-Scale Flow in the Core , 2007 .

[48]  Gauthier Hulot,et al.  Secousses (jerks) de la variation séculaire et mouvements dans le noyau terrestre , 1993 .

[49]  E. Kalnay,et al.  C ○ 2007 The Authors , 2006 .

[50]  Akira Kageyama,et al.  Generation mechanism of a dipole field by a magnetohydrodynamic dynamo , 1997 .

[51]  Andrew Jackson,et al.  Equatorially Dominated Magnetic Field Change at the Surface of Earth's Core , 2003, Science.

[52]  W. Kuang,et al.  Data assimilation in a sparsely observed one-dimensional modeled MHD system , 2007 .

[53]  J. Neumann,et al.  Numerical Integration of the Barotropic Vorticity Equation , 1950 .

[54]  George E. Backus,et al.  Application of mantle filter theory to the magnetic jerk of 1969 , 1983 .

[55]  Jean-Paul Masson,et al.  Experimental study of super-rotation in a magnetostrophic spherical Couette flow , 2005, physics/0512217.

[56]  Catherine Constable,et al.  Foundations of geomagnetism , 1996 .

[57]  Lijun Liu,et al.  Reconstructing Farallon Plate Subduction Beneath North America Back to the Late Cretaceous , 2008, Science.

[58]  Gauthier Hulot,et al.  Detecting thermal boundary control in surface flows from numerical dynamos , 2007 .

[59]  Edward Crisp Bullard,et al.  Kinematics of geomagnetic secular variation in a perfectly conducting core , 1968, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[60]  Paul H. Roberts,et al.  Magnetohydrodynamics of the Earth's Core , 1972 .

[61]  A. Tarantola Inversion of seismic reflection data in the acoustic approximation , 1984 .

[62]  Nikolai A. Tsyganenko,et al.  Magnetospheric configurations from a high-resolution data-based magnetic field model , 2007 .

[63]  Philippe Courtier,et al.  Unified Notation for Data Assimilation : Operational, Sequential and Variational , 1997 .

[64]  Alexandre Fournier,et al.  Fast torsional waves and strong magnetic field within the Earth’s core , 2010, Nature.

[65]  Robert W. Schunk,et al.  Utah State University Global Assimilation of Ionospheric Measurements Gauss‐Markov Kalman filter model of the ionosphere: Model description and validation , 2006 .

[66]  Vincent Lesur,et al.  Geomagnetic Core Field Secular Variation Models , 2010 .

[67]  David Gubbins,et al.  Fall in Earth's Magnetic Field Is Erratic , 2006, Science.

[68]  P. Bergthórsson,et al.  Numerical Weather Map Analysis , 1955 .

[69]  Catherine Constable,et al.  Geomagnetic field for 0–3 ka: 2. A new series of time‐varying global models , 2009 .

[70]  Gauthier Hulot,et al.  Uniqueness of mainly dipolar magnetic fields recovered from directional data , 1997 .

[71]  Mioara Mandea,et al.  The Magnetic Field of Planet Earth , 2010 .

[72]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[73]  David Gubbins,et al.  A formalism for the inversion of geomagnetic data for core motions with diffusion , 1996 .

[74]  V. Lesur,et al.  Comment on “Can core-surface flow models be used to improve the forecast of the Earth's main magnetic field?” by Stefan Maus, Luis Silva, and Gauthier Hulot , 2009 .

[75]  Arnaud Chulliat,et al.  Short Timescale Core Dynamics: Theory and Observations , 2010 .

[76]  A. Jackson,et al.  Inversion of torsional oscillations for the structure and dynamics of Earth's core , 2009 .

[77]  Yoshimori Honkura,et al.  Scale variability in convection-driven MHD dynamos at low Ekman number , 2008 .

[78]  Gauthier Hulot,et al.  A statistical approach to the Earth's main magnetic field , 1994 .

[79]  Gauthier Hulot,et al.  A simple model for mantle-driven flow at the top of Earth’s core , 2008 .

[80]  Jeremy Bloxham,et al.  Geomagnetic secular variation , 1989, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[81]  Ricardo Todling,et al.  A fixed-lag Kalman smoother for retrospective data assimilation , 1994 .

[82]  Ataru Sakuraba,et al.  Generation of a strong magnetic field using uniform heat flux at the surface of the core , 2009 .

[83]  Nils Olsen,et al.  The Present Field , 2007 .

[84]  Michael Ghil,et al.  Advanced data assimilation in strongly nonlinear dynamical systems , 1994 .

[85]  Andrew Jackson,et al.  Can a 1-D mantle electrical conductivity model generate magnetic jerk differential time delays? , 2008 .

[87]  G. Hulot,et al.  Swarm: A constellation to study the Earth’s magnetic field , 2006 .

[88]  Jeroen Tromp,et al.  Spectral-element and adjoint methods in seismology , 2008 .

[89]  David Gubbins,et al.  Use of the frozen flux approximation in the interpretation of archaeomagnetic and palaeomagnetic data , 1983 .

[90]  Catherine Constable,et al.  Geomagnetic field for 0–3 ka: 1. New data sets for global modeling , 2009 .

[91]  S. I. Braginskii Torsional Magnetohydrodynamic Vibrations in the Earth's Core and Variations in Day Length , 1970 .

[92]  三好 建正 『Atmospheric Modeling, Data Assimilation and Predictability』, E Kalnay著, Cambridge University Press, 2002, 34lpp, $ 45.00, ISBN : 0-521-79629-6 , 2003 .

[93]  J. Taylor,et al.  The magneto-hydrodynamics of a rotating fluid and the earth’s dynamo problem , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[94]  Jeremy Bloxham,et al.  The origin of geomagnetic jerks , 2002, Nature.

[95]  Mioara Mandea,et al.  CHAOS—a model of the Earth's magnetic field derived from CHAMP, Ørsted, and SAC‐C magnetic satellite data , 2006 .

[96]  Yves Gallet,et al.  Evidence for rapid geomagnetic field intensity variations in Western Europe over the past 800 years from new French archeointensity data , 2009 .

[97]  Victor Shutyaev,et al.  Data assimilation for the earth system , 2003 .

[98]  A. Griewank,et al.  Automatic differentiation of algorithms : theory, implementation, and application , 1994 .

[99]  A. Bennett,et al.  TOPEX/POSEIDON tides estimated using a global inverse model , 1994 .

[100]  U. Christensen,et al.  Energy flux determines magnetic field strength of planets and stars , 2009, Nature.

[101]  D. E. Smylie,et al.  Dynamics of earth's deep interior and earth rotation , 1993 .

[102]  Kathy Whaler,et al.  Forecasting change of the magnetic field using core surface flows and ensemble Kalman filtering , 2009 .

[103]  Gauthier Hulot,et al.  ArcheoInt : An upgraded compilation of geomagnetic field intensity data for the past ten millennia and its application to the recovery of the past dipole moment , 2008 .

[104]  Ulrich R. Christensen,et al.  Numerical Dynamo Simulations , 2007 .

[105]  U. Christensen,et al.  Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields , 2006 .

[106]  Alexandre Fournier,et al.  Forward and adjoint quasi-geostrophic models of the geomagnetic secular variation , 2008, 1002.2323.

[107]  Eric P. Chassignet,et al.  Ocean Weather Forecasting , 2006 .

[108]  Andrew C. Lorenc,et al.  Analysis methods for numerical weather prediction , 1986 .

[109]  Nils Olsen,et al.  FAST TRACK PAPER: Crustal concealing of small-scale core-field secular variation , 2009 .

[110]  Olivier Talagrand,et al.  Assimilation of Observations, an Introduction (gtSpecial IssueltData Assimilation in Meteology and Oceanography: Theory and Practice) , 1997 .

[111]  Gauthier Hulot,et al.  Can core‐surface flow models be used to improve the forecast of the Earth's main magnetic field? , 2008 .

[112]  Gauthier Hulot,et al.  On core surface flows inferred from satellite magnetic data , 2005 .

[113]  J. Cain,et al.  Geomagnetic field analysis , 1989 .

[114]  Mioara Mandea,et al.  Rapidly changing flows in the Earth's core , 2008 .

[115]  M. Sambridge,et al.  Automatic differentiation in geophysical inverse problems , 2005 .

[116]  A. Jackson,et al.  TIME-DEPENDENCY OF TANGENTIALLY GEOSTROPHIC CORE SURFACE MOTIONS , 1997 .

[117]  Daniel Brito,et al.  Experimental and numerical studies of convection in a rapidly rotating spherical shell , 2007, Journal of Fluid Mechanics.

[118]  D. Jault,et al.  Westward drift, core motions and exchanges of angular momentum between core and mantle , 1988, Nature.

[119]  Erwan Thébault,et al.  IGRF candidate models at times of rapid changes in core field acceleration , 2010 .

[120]  Mioara Mandea,et al.  GRIMM: the GFZ Reference Internal Magnetic Model based on vector satellite and observatory data , 2008 .

[121]  F. L. Dimet,et al.  Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects , 1986 .

[122]  Zigang Wei,et al.  Constraining a numerical geodynamo model with 100 years of surface observations , 2009 .

[123]  R Volk,et al.  Generation of a magnetic field by dynamo action in a turbulent flow of liquid sodium. , 2007, Physical review letters.

[124]  Jeremy Bloxham,et al.  An Earth-like numerical dynamo model , 1997, Nature.

[125]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[126]  Christopher C. Finlay,et al.  Geomagnetic Secular Variation and Its Applications to the Core , 2007 .

[127]  Pierre Brasseur,et al.  Ocean Data Assimilation Using Sequential Methods Based on the Kalman Filter , 2006 .

[128]  Adam Schultz,et al.  Non-linear conjugate gradient inversion for global EM induction: Resolution studies , 2008 .

[129]  B. Lehnert,et al.  Magnetohydrodynamic Waves Under the Action of the Coriolis Force. II. , 1954 .

[130]  Dominique Jault,et al.  Axial invariance of rapidly varying diffusionless motions in the Earth’s core interior , 2008, 0809.3440.

[131]  Nils Olsen,et al.  Extending comprehensive models of the Earth's magnetic field with Ørsted and CHAMP data , 2004 .

[132]  S. Cohn,et al.  Ooce Note Series on Global Modeling and Data Assimilation Construction of Correlation Functions in Two and Three Dimensions and Convolution Covariance Functions , 2022 .

[133]  Mioara Mandea,et al.  Small-scale structure of the geodynamo inferred from Oersted and Magsat satellite data , 2002, Nature.

[134]  Gauthier Hulot,et al.  Reply to comment by V. Lesur et al. on “Can core‐surface flow models be used to improve the forecast of the Earth's main magnetic field” , 2009 .

[135]  Masafumi Kamachi,et al.  Time-space weak-constraint data assimilation for nonlinear models , 2000 .

[136]  Gauthier Hulot,et al.  Conditions for Earth-like geodynamo models , 2010 .

[137]  Fausto Cattaneo,et al.  Nonlinear dynamos: A complex generalization of the Lorenz equations , 1985 .

[138]  Christopher C. Finlay,et al.  Historical variation of the geomagnetic axial dipole , 2008 .

[139]  Gauthier Hulot,et al.  An analysis of the geomagnetic field over the past 2000 years , 1998 .

[140]  C. R. Hagelberg,et al.  Mantle circulation models with variational data assimilation: inferring past mantle flow and structure from plate motion histories and seismic tomography , 2001 .

[141]  Thomas Kaminski,et al.  Recipes for adjoint code construction , 1998, TOMS.

[142]  N. Gillet,et al.  Ensemble inversion of time‐dependent core flow models , 2009 .

[143]  Raymond Hide,et al.  Free hydromagnetic oscillations of the earth's core and the theory of the geomagnetic secular variation , 1966, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[144]  S. I. Braginsky,et al.  Short-period geomagnetic secular variation , 1984 .

[145]  Lijun Liu,et al.  Simultaneous inversion of mantle properties and initial conditions using an adjoint of mantle convection , 2008 .

[146]  Matthew R. Walker,et al.  Four centuries of geomagnetic secular variation from historical records , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[147]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[148]  Eric P. Chassignet,et al.  Ocean weather forecasting : an integrated view of oceanography , 2006 .

[149]  Mioara Mandea,et al.  CHAOS-2—a geomagnetic field model derived from one decade of continuous satellite data , 2009 .

[150]  L. Gandin Objective Analysis of Meteorological Fields , 1963 .

[151]  David Gubbins,et al.  Geomagnetic field analysis—V. Determining steady core-surface flows directly from geomagnetic observations , 1995 .

[152]  Paul H. Roberts,et al.  On Analysis of the Secular Variation , 1965 .