A Statistic for Testing the Null Hypothesis of Elliptical Symmetry
暂无分享,去创建一个
[1] E. Stein,et al. Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .
[2] R. C. Bose,et al. Essays in probability and statistics , 1971 .
[3] K C Rao,et al. A chi-squabe statistic for goodies-of-fit tests within the exponential family , 1974 .
[4] N. J. H. Small. Plotting squared radii , 1978 .
[5] Rudolf Beran,et al. Testing for Ellipsoidal Symmetry of a Multivariate Density , 1979 .
[6] G. Simons,et al. On the theory of elliptically contoured distributions , 1981 .
[7] S. Kotz,et al. Symmetric Multivariate and Related Distributions , 1989 .
[8] T. W. Anderson,et al. Statistical Inference in Elliptically Contoured and Related Distributions , 1990 .
[9] Adolfo J. Quiroz,et al. Some new tests for multivariate normality , 1991 .
[10] Ludwig Baringhaus,et al. Testing for Spherical Symmetry of a Multivariate Distribution , 1991 .
[11] P. Bentler,et al. A necessary test of goodness of fit for sphericity , 1993 .
[12] Sigeo Aki,et al. On nonparametric tests for symmetry inRm , 1993 .
[13] S. Rachev,et al. Testing Multivariate Symmetry , 1995 .
[14] A. Quiroz,et al. Estimation of a multivariate Box-Cox transformation to elliptical symmetry via the empirical characteristic function , 1996 .
[15] V. Koltchinskii,et al. Testing for Spherical Symmetry of a Multivariate Distribution , 1998 .
[16] R. Dudley,et al. Uniform Central Limit Theorems: Notation Index , 2014 .
[17] Spherical harmonics in quadratic forms for testing multivariate normality , 2001 .