Rapid Identification of Neutralizing Antibodies against SARS-CoV-2 Variants by mRNA Display

The increasing prevalence of SARS-CoV-2 variants with the ability to escape existing humoral protection conferred by previous infection and/or immunization necessitates the discovery of broadly-reactive neutralizing antibodies (nAbs). Utilizing mRNA display, we identified a set of antibodies against SARS-CoV-2 spike (S) proteins and characterized the structures of nAbs that recognized epitopes in the S1 subunit of the S glycoprotein. These structural studies revealed distinct binding modes for several antibodies, including targeting of rare cryptic epitopes in the receptor-binding domain (RBD) of S that interacts with angiotensin- converting enzyme 2 (ACE2) to initiate infection, as well as the S1 subdomain 1. A potent ACE2-blocking nAb was further engineered to sustain binding to S RBD with the E484K and L452R substitutions found in multiple SARS-CoV-2 variants. We demonstrate that mRNA display is a promising approach for the rapid identification of nAbs that can be used in combination to combat emerging SARS-CoV-2 variants.

[1]  A. Telenti,et al.  The dual function monoclonal antibodies VIR-7831 and VIR-7832 demonstrate potent in vitro and in vivo activity against SARS-CoV-2 , 2022, bioRxiv.

[2]  M. Nussenzweig,et al.  Mapping mutations to the SARS-CoV-2 RBD that escape binding by different classes of antibodies , 2021, Nature Communications.

[3]  A. Telenti,et al.  SARS-CoV-2 immune evasion by the B.1.427/B.1.429 variant of concern , 2021, Science.

[4]  D. Burton,et al.  Structural and functional ramifications of antigenic drift in recent SARS-CoV-2 variants , 2021, Science.

[5]  M. Ribes,et al.  Adapt or perish: SARS-CoV-2 antibody escape variants defined by deletions in the Spike N-terminal Domain , 2021, Signal Transduction and Targeted Therapy.

[6]  R. Andino,et al.  Transmission, infectivity, and neutralization of a spike L452R SARS-CoV-2 variant , 2021, Cell.

[7]  Samuel J. Hinshaw,et al.  The neutralizing antibody, LY-CoV555, protects against SARS-CoV-2 infection in nonhuman primates , 2021, Science Translational Medicine.

[8]  A. Katzourakis,et al.  A novel variant of interest of SARS-CoV-2 with multiple spike mutations is identified from travel surveillance in Africa , 2021, medRxiv.

[9]  D. Burton,et al.  A human antibody reveals a conserved site on beta-coronavirus spike proteins and confers protection against SARS-CoV-2 infection , 2021, bioRxiv.

[10]  T. Ndung’u,et al.  Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma , 2021, Nature.

[11]  R. Taube,et al.  SARS-CoV-2 spike variants exhibit differential infectivity and neutralization resistance to convalescent or post-vaccination sera , 2021, Cell Host & Microbe.

[12]  M. Beltramello,et al.  N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2 , 2021, Cell.

[13]  A. Godzik,et al.  Detection of a SARS-CoV-2 variant of concern in South Africa , 2021, Nature.

[14]  Sergei L. Kosakovsky Pond,et al.  Detection of a SARS-CoV-2 variant of concern in South Africa , 2021, Nature.

[15]  D. Ho,et al.  Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7 , 2021, Nature.

[16]  Carl A. B. Pearson,et al.  Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England , 2021, Science.

[17]  S. Hoehl,et al.  Bamlanivimab does not neutralize two SARS-CoV-2 variants carrying E484K in vitro , 2021, medRxiv.

[18]  D. Stuart,et al.  The antigenic anatomy of SARS-CoV-2 receptor binding domain , 2021, Cell.

[19]  W. P. Duprex,et al.  Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape , 2021, Science.

[20]  D. Ho,et al.  Antibody Resistance of SARS-CoV-2 Variants B.1.351 and B.1.1.7 , 2021, bioRxiv.

[21]  Larissa B. Thackray,et al.  Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein , 2021, Cell.

[22]  M. Beltramello,et al.  N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2 , 2021, bioRxiv.

[23]  D. Ho,et al.  Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite , 2021, bioRxiv.

[24]  D. Stuart,et al.  ­­­The Antigenic Anatomy of SARS-CoV-2 Receptor Binding Domain , 2020, SSRN Electronic Journal.

[25]  John D. Davis,et al.  REGN-COV2, a Neutralizing Antibody Cocktail, in Outpatients with Covid-19 , 2020, The New England journal of medicine.

[26]  J. Bloom,et al.  Prospective mapping of viral mutations that escape antibodies used to treat COVID-19 , 2020, bioRxiv.

[27]  Sarah K. Hilton,et al.  Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition , 2020, Cell Host & Microbe.

[28]  Vineet D. Menachery,et al.  Spike mutation D614G alters SARS-CoV-2 fitness , 2020, Nature.

[29]  C. Rice,et al.  Author response: Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants , 2020 .

[30]  M. Nussenzweig,et al.  SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies , 2020, Nature.

[31]  M. Beltramello,et al.  Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology , 2020, Cell.

[32]  Sarah K. Hilton,et al.  Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition , 2020, bioRxiv.

[33]  Sarah K. Hilton,et al.  Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding , 2020, Cell.

[34]  J. Sodroski,et al.  Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike , 2020, Nature.

[35]  Lisa E. Gralinski,et al.  Potently neutralizing and protective human antibodies against SARS-CoV-2 , 2020, Nature.

[36]  D. Burton,et al.  Structural basis of a shared antibody response to SARS-CoV-2 , 2020, Science.

[37]  J. Skehel,et al.  SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects , 2020, Nature Structural & Molecular Biology.

[38]  Pardis C Sabeti,et al.  Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant , 2020, bioRxiv.

[39]  M. Nussenzweig,et al.  Structures of Human Antibodies Bound to SARS-CoV-2 Spike Reveal Common Epitopes and Recurrent Features of Antibodies , 2020, Cell.

[40]  R. Owens,et al.  Neutralization of SARS-CoV-2 by Destruction of the Prefusion Spike , 2020, Cell Host & Microbe.

[41]  C. Rice,et al.  Convergent antibody responses to SARS-CoV-2 in convalescent individuals , 2020, Nature.

[42]  Jesse D. Bloom,et al.  Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding , 2020, bioRxiv.

[43]  J. Dye,et al.  Broad neutralization of SARS-related viruses by human monoclonal antibodies , 2020, Science.

[44]  G. Atwal,et al.  Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies , 2020, Science.

[45]  R. Welsh,et al.  Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail , 2020, Science.

[46]  C. Rice,et al.  Convergent Antibody Responses to SARS-CoV-2 in Convalescent Individuals , 2020, Nature.

[47]  Amalio Telenti,et al.  Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody , 2020, Nature.

[48]  X. Xie,et al.  Potent Neutralizing Antibodies against SARS-CoV-2 Identified by High-Throughput Single-Cell Sequencing of Convalescent Patients’ B Cells , 2020, Cell.

[49]  M. Beltramello,et al.  Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody , 2020, Nature.

[50]  C. Rice,et al.  Convergent Antibody Responses to SARS-CoV-2 Infection in Convalescent Individuals , 2020, bioRxiv.

[51]  Larissa B. Thackray,et al.  Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein , 2020, bioRxiv.

[52]  M. V. van Breemen,et al.  Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability , 2020, Science.

[53]  David I Stuart,et al.  Neutralization of SARS-CoV-2 by Destruction of the Prefusion Spike , 2020, bioRxiv.

[54]  J. Bloom,et al.  Protocol and Reagents for Pseudotyping Lentiviral Particles with SARS-CoV-2 Spike Protein for Neutralization Assays , 2020, bioRxiv.

[55]  G. Herrler,et al.  SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor , 2020, Cell.

[56]  Young-Jun Park,et al.  Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein , 2020, Cell.

[57]  B. Graham,et al.  Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation , 2020, Science.

[58]  Kai Zhao,et al.  A pneumonia outbreak associated with a new coronavirus of probable bat origin , 2020, Nature.

[59]  Angiotensin-Converting Enzyme 2 , 2020, Definitions.

[60]  M. Newton,et al.  In vitro selection of peptides and proteins - advantages of mRNA display. , 2019, ACS synthetic biology.

[61]  John L Rubinstein,et al.  The human coronavirus HCoV-229E S-protein structure and receptor binding , 2019, eLife.

[62]  A. Walls,et al.  Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion , 2019, Cell.

[63]  Erik Lindahl,et al.  New tools for automated high-resolution cryo-EM structure determination in RELION-3 , 2018, eLife.

[64]  Conrad C. Huang,et al.  UCSF ChimeraX: Meeting modern challenges in visualization and analysis , 2018, Protein science : a publication of the Protein Society.

[65]  Barney S. Graham,et al.  Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen , 2017, Proceedings of the National Academy of Sciences.

[66]  Yi Shi,et al.  Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains , 2017, Nature Communications.

[67]  David J. Fleet,et al.  cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination , 2017, Nature Methods.

[68]  K Dane Wittrup,et al.  Biophysical properties of the clinical-stage antibody landscape , 2017, Proceedings of the National Academy of Sciences.

[69]  Muyuan Chen,et al.  High resolution single particle refinement in EMAN2.1. , 2016, Methods.

[70]  Barney S. Graham,et al.  Pre-fusion structure of a human coronavirus spike protein , 2016, Nature.

[71]  F. Dimaio,et al.  Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer , 2016, Nature.

[72]  B. Prabhakar,et al.  Human Monoclonal Antibodies against Highly Conserved HR1 and HR2 Domains of the SARS-CoV Spike Protein Are More Broadly Neutralizing , 2012, PloS one.

[73]  Ren Sun,et al.  Rapid mRNA-display selection of an IL-6 inhibitor using continuous-flow magnetic separation. , 2011, Angewandte Chemie.

[74]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[75]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[76]  R. Sun,et al.  mRNA Display Design of Fibronectin-based Intrabodies That Detect and Inhibit Severe Acute Respiratory Syndrome Coronavirus Nucleocapsid Protein* , 2009, The Journal of Biological Chemistry.

[77]  Ren Sun,et al.  mRNA display selection of a high-affinity, modification-specific phospho-IkappaBalpha-binding fibronectin. , 2008, ACS chemical biology.

[78]  Colleen E. Price,et al.  Contribution of variable domains to the stability of humanized IgG1 monoclonal antibodies. , 2008, Journal of pharmaceutical sciences.

[79]  K. Henrick,et al.  Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.

[80]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[81]  W. Hong,et al.  Monoclonal Antibodies Targeting the HR2 Domain and the Region Immediately Upstream of the HR2 of the S Protein Neutralize In Vitro Infection of Severe Acute Respiratory Syndrome Coronavirus , 2006, Journal of Virology.

[82]  L. Enjuanes,et al.  Subcellular localization of the severe acute respiratory syndrome coronavirus nucleocapsid protein. , 2005, The Journal of general virology.

[83]  David N Mastronarde,et al.  Automated electron microscope tomography using robust prediction of specimen movements. , 2005, Journal of structural biology.

[84]  J. Jan,et al.  Characterization of neutralizing monoclonal antibodies recognizing a 15-residues epitope on the spike protein HR2 region of severe acute respiratory syndrome coronavirus (SARS-CoV) , 2005, Journal of Biomedical Sciences.

[85]  T. Greenough,et al.  What’s new in the renin-angiotensin system? , 2004, Cellular and Molecular Life Sciences CMLS.

[86]  Richard W Roberts,et al.  mRNA display: ligand discovery, interaction analysis and beyond. , 2003, Trends in biochemical sciences.

[87]  J W Szostak,et al.  RNA-peptide fusions for the in vitro selection of peptides and proteins. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[88]  C. Hutchison,et al.  A complete library of point substitution mutations in the glucocorticoid response element of mouse mammary tumor virus. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[89]  M. Nussenzweig,et al.  One sentence summary: Nanoparticle strategy for pan-sarbecovirus vaccine Keywords: neutralizing antibodies, receptor-binding domain, sarbecoviruses, vaccine, zoonotic coronaviruses 125-character summary for online ToC: Immunizing with nanoparticles displaying diverse coronavirus RBDs elicits cross-r , 2020 .

[90]  STRUCTURAL AND FUNCTIONAL ANALYSIS , 2015 .

[91]  R. Sun,et al.  mRNA Display Selection of a High-Affinity , Modification-Specific Phospho-I κ B α-Binding Fibronectin , 2010 .

[92]  J W Szostak,et al.  Optimized synthesis of RNA-protein fusions for in vitro protein selection. , 2000, Methods in enzymology.

[93]  Hoon-mi Kim T4 DNA ligase , 1985 .

[94]  Vincent B. Chen,et al.  PHENIX: a comprehensive Python-based system for macromolecular structure solution , 2010, Acta crystallographica. Section D, Biological crystallography.