On the sensitivity of the usual t- and F-tests to covariance misspecification

[1]  C. Craig On the Frequency Function of $xy$ , 1936 .

[2]  E. J. G. Pitman,et al.  The “closest” estimates of statistical parameters , 1937, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  J. Durbin,et al.  Testing for serial correlation in least squares regression. I. , 1950, Biometrika.

[4]  J. Durbin,et al.  Testing for serial correlation in least squares regression. II. , 1950, Biometrika.

[5]  R. Laha On a Characterisation of the Gamma Distribution , 1954 .

[6]  E. Lukács A Characterization of the Gamma Distribution , 1955 .

[7]  H. Vinod Effects of ARMA Errors on the Significance Tests for Regression Coefficients , 1976 .

[8]  J. Magnus Maximum likelihood estimation of the GLS model with unknown parameters in the disturbance covariance matrix , 1978 .

[9]  Masao Nakamura,et al.  On the Impact of the Tests for Serial Correlation Upon the Test of Significance for the Regression Coefficient , 1978 .

[10]  Larry W. Cornwell,et al.  Mathematical forms of the distribution of the product of two normal variables , 1978 .

[11]  Bridger M. Mitchell,et al.  Estimating the Autocorrelated Error Model with Trended Data: Further Results, , 1980 .

[12]  J. Kiviet Effects of ARMA Errors on Tests for Regression Coefficients: Comments on Vinod's Article; Improved and Additional Results , 1980 .

[13]  W. Q. Meeker,et al.  The Product of Two Normally Distributed Random Variables , 1982 .

[14]  Hrishikesh D. Vinod,et al.  Recent Advances in Regression Methods. , 1983 .

[15]  Alok Bhargava,et al.  Testing Residuals from Least Squares Regression for Being Generated by the Gaussian Random Walk , 1983 .

[16]  Melvin D. Springer,et al.  Selected Tables in Mathematical Statistics (Vol. VII), The Product of Two Normally Distributed Random Variables , 1983 .

[17]  Thomas J Rothernberg HYPOTHESIS TESTING IN LINEAR MODELS WHEN THE ERROR COVARIANCE MATRIX IS NONSCALAR , 1984 .

[18]  M. King,et al.  Autocorrelation pre-testing in the linear model: Estimation, testing and prediction , 1984 .

[19]  Thomas J. Rothenberg,et al.  APPROXIMATE NORMALITY OF GENERALIZED LEAST SQUARES ESTIMATES , 1984 .

[20]  W. Krämer The power of the Durbin-Watson test for regressions without an intercept , 1985 .

[21]  W. Krämer On the robustness of the F-test to autocorrelation among disturbances , 1986 .

[22]  Jean-Marie Dufour,et al.  Exact tests and confidence sets in linear regressions with autocorrelated errors , 1990 .

[23]  Linear regression with correlated errors: bounds on coefficient estimates and t-values , 1987 .

[24]  Thomas J. Rothenberg,et al.  Approximate Power Functions for Some Robust Tests of Regression Coefficients , 1988 .

[25]  J. Magnus,et al.  Matrix Differential Calculus with Applications in Statistics and Econometrics (Revised Edition) , 1999 .

[26]  Jan R. Magnus,et al.  The sensitivity of OLS when the variance matrix is (partially) unknown , 1999 .

[27]  Jan R Magnus The traditional pretest estimator@@@The traditional pretest estimator , 1999 .

[28]  Jan R. Magnus,et al.  The Traditional Pretest Estimator , 1999 .

[29]  Chin-Yuan Hu,et al.  On a Characterization of the Gamma Distribution: The Independence of the Sample Mean and the Sample Coefficient of Variation , 1999 .

[30]  J. Magnus,et al.  Matrix Differential Calculus with Applications in Statistics and Econometrics , 2019, Wiley Series in Probability and Statistics.