Camera model and calibration process for high-accuracy digital image metrology of inspection planes

High accuracy digital image based metrology must rely on an integrated model of image generation that is able to consider simultaneously the geometry of the camera vs. object positioning, and the conversion of the optical image on the sensor into an electronic digital format. In applications of automated visual inspection involving the analysis of approximately plane objects these models are generally simplified in order to facilitate the process of camera calibration. In this context, the lack of rigor in the determination of the intrinsic parameters in such models is particularly relevant. Aiming at the high accuracy metrology of contours of objects lying on an analysis plane, and involving sub-pixel measurements, this paper presents a three-stage camera model that includes an extrinsic component of perspective distortion and the intrinsic components of radial lens distortion and sensor misalignment. The later two factors are crucial in applications of machine vision that rely on the use of low cost optical components. A polynomial model for the negative radial lens distortion of wide field of view CCTV lenses is also established.