Adaptive Air Charge Estimation for Turbocharged Diesel Engines Without Exhaust Gas Recirculation

The paper presents an adaptive observer for in-cylinder air charge estimation for turbocharged diesel engines without exhaust gas recirculation (EGR). We assess the observability of the mean value engine model when the intake manifold pressure and the compressor flow are measured, and the performance of the observer is compared to existing schemes analytically and with limited simulations. Specifically, it is shown that the designed observer performs better than the conventional schemes during fast step changes in engine fueling level, eventhough it uses a simple but time varying parameterization of the volumetric efficiency. Furthermore, the estimate is less sensitive to changes in engine parameters than the existing schemes.

[1]  E. Hendricks Mean Value Modelling of Large Turbocharged Two-Stroke Diesel Engines , 1989 .

[2]  Ilya Kolmanovsky,et al.  Application of input estimation techniques to charge estimation and control in automotive engines , 2002 .

[3]  Jessy W. Grizzle,et al.  Improved cylinder air charge estimation for transient air fuel ratio control , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[4]  I.V. Kolmanovsky,et al.  Intake oxygen concentration estimation for DI diesel engines , 1999, Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328).

[5]  Ujjwal K Saha,et al.  INTERNAL COMBUSTION ENGINES , 1998 .

[6]  Anuradha M. Annaswamy,et al.  Robust Adaptive Control , 1984, 1984 American Control Conference.

[7]  John B. Heywood,et al.  Internal combustion engine fundamentals , 1988 .

[8]  Ilya V. Kolmanovsky,et al.  Control of variable geometry turbocharged diesel engines for reduced emissions , 2000, IEEE Trans. Control. Syst. Technol..

[9]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[10]  Luigi del Re,et al.  EGO sensor based robust output control of EGR in diesel engines , 1995, IEEE Trans. Control. Syst. Technol..

[11]  A. Krener,et al.  Nonlinear controllability and observability , 1977 .

[12]  Elbert Hendricks,et al.  Mean Value Modelling of Spark Ignition Engines , 1990 .

[13]  E.J.P. Rutten,et al.  Mean value modeling of spark ignition engines , 1993 .

[14]  Roy S. Smith,et al.  Air charge estimation for turbocharged diesel engines , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[15]  A. Morse Global stability of parameter-adaptive control systems , 1979 .

[16]  Walter W. Yuen,et al.  A mathematical engine model including the effect of engine emissions , 1984 .

[17]  Lars Eriksson,et al.  Air-to-Cylinder Observer on a Turbocharged SI-Engine with Wastegate , 2001 .

[18]  I. Kolmanovsky,et al.  Control of variable geometry turbocharged diesel engines for reduced emissions , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[19]  A. Stotsky,et al.  Simple unknown input estimation techniques for automotive applications , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[20]  N. Watson,et al.  Turbocharging the internal combustion engine , 1982 .

[21]  Elbert Hendricks,et al.  Modelling of the Intake Manifold Filling Dynamics , 1996 .

[22]  Mrdjan J. Jankovic,et al.  EGR-VGT control schemes: experimental comparison for a high-speed diesel engine , 2000 .

[23]  I. Kolmanovsky,et al.  Charge control for direct injection spark ignition engines with EGR , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[24]  Petar V. Kokotovic,et al.  Instability analysis and improvement of robustness of adaptive control , 1984, Autom..

[25]  A. Morse,et al.  Global stability of parameter-adaptive control systems , 1979, 1979 18th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.