Linear regression MDP scheme for discrete backward stochastic differential equations under general conditions
暂无分享,去创建一个
[1] J. Chassagneux,et al. Numerical simulation of quadratic BSDEs , 2013, 1307.5741.
[2] P. Briand,et al. Simulation of BSDEs by Wiener Chaos Expansion , 2012, 1204.4137.
[3] Smart expansion and fast calibration for jump diffusions , 2007, Finance Stochastics.
[4] Jean-Philippe Bouchaud,et al. Hedged Monte-Carlo: low variance derivative pricing with objective probabilities , 2000 .
[5] Ben Zineb Tarik,et al. Preliminary control variates to improve empirical regression methods , 2013 .
[6] Adrien Richou,et al. Étude théorique et numérique des équations différentielles stochastiques rétrogrades , 2010 .
[7] Robert Denk,et al. A forward scheme for backward SDEs , 2007 .
[8] Emmanuel Gobet,et al. L2-time regularity of BSDEs with irregular terminal functions , 2010 .
[9] Dan Crisan,et al. Solving Backward Stochastic Differential Equations Using the Cubature Method: Application to Nonlinear Pricing , 2010, SIAM J. Financial Math..
[10] Emmanuel Gobet,et al. Numerical simulation of BSDEs using empirical regression methods: theory and practice , 2005 .
[11] Emmanuel Gobet,et al. Error expansion for the discretization of backward stochastic differential equations , 2006, math/0602503.
[12] E. Gobet,et al. A regression-based Monte Carlo method to solve backward stochastic differential equations , 2005, math/0508491.
[13] Hai-ping Shi. Backward stochastic differential equations in finance , 2010 .
[14] Dan Crisan,et al. Sharp derivative bounds for solutions of degenerate semi-linear partial differential equations , 2012 .
[15] Nicole El Karoui,et al. Pricing Via Utility Maximization and Entropy , 2000 .
[16] Emmanuel Gobet,et al. Approximation of backward stochastic differential equations using Malliavin weights and least-squares regression , 2016, 1601.01186.
[17] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[18] Christian Bender,et al. Least-Squares Monte Carlo for Backward SDEs , 2012 .
[19] Etienne Pardoux,et al. A Survey of Möbius Groups , 1995 .
[20] Jianfeng Zhang. A numerical scheme for BSDEs , 2004 .
[21] P. Turkedjiev. Numerical methods for backward stochastic differential equations of quadratic and locally Lipschitz type , 2013 .
[22] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[23] Christian Bender,et al. Importance Sampling for Backward SDEs , 2010 .
[24] Peter Imkeller,et al. Path regularity and explicit convergence rate for BSDE with truncated quadratic growth , 2009, 0905.0788.
[25] Emmanuel Gobet,et al. Generalized fractional smoothness and Lp-variation of BSDEs with non-Lipschitz terminal condition , 2011, 1103.0371.
[26] Thilo Moseler. A Picard-type Iteration for Backward Stochastic Differential Equations : Convergence and Importance Sampling , 2010 .
[27] P. Protter,et al. Numberical Method for Backward Stochastic Differential Equations , 2002 .
[28] P. Imkeller,et al. Utility maximization in incomplete markets , 2005, math/0508448.
[29] Plamen Turkedjiev,et al. Two algorithms for the discrete time approximation of Markovian backward stochastic differential equations under local conditions , 2013, 1309.4378.
[30] Gene H. Golub,et al. Matrix computations , 1983 .
[31] E. Gobet,et al. Rate of convergence of an empirical regression method for solving generalized backward stochastic differential equations , 2006 .
[32] Céline Labart,et al. Solving BSDE with Adaptive Control Variate , 2010, SIAM J. Numer. Anal..
[33] Adrien Richou,et al. Numerical simulation of BSDEs with drivers of quadratic growth , 2010, 1001.0401.
[34] Emmanuel Gobet,et al. Preliminary control variates to improve empirical regression methods , 2013, Monte Carlo Methods Appl..
[35] G. Guatteri,et al. Weak existence and uniqueness for forward–backward SDEs , 2006 .
[36] Adam Krzyzak,et al. A Distribution-Free Theory of Nonparametric Regression , 2002, Springer series in statistics.
[37] G. Pagès,et al. A QUANTIZATION TREE METHOD FOR PRICING AND HEDGING MULTIDIMENSIONAL AMERICAN OPTIONS , 2005 .
[38] B. Bouchard,et al. Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations , 2004 .