Linear regression MDP scheme for discrete backward stochastic differential equations under general conditions

We design a numerical scheme for solving the Multi step-forward Dynamic Programming (MDP) equation arising from the time-discretization of backward stochastic differential equations. The generator is assumed to be locally Lipschitz, which includes some cases of quadratic drivers. When the large sequence of conditional expectations is computed using empirical least-squares regressions, under general conditions we establish an upper bound error as the average, rather than the sum, of local regression errors only, suggesting that our error estimation is tight. Despite the nested regression problems, the interdependency errors are justified to be at most of the order of the statistical regression errors (up to logarithmic factor). Finally, we optimize the algorithm parameters, depending on the dimension and on the smoothness of value functions, in the limit as the time mesh size goes to zero and compute the complexity needed to achieve a given accuracy. Numerical experiments are presented illustrating theoretical convergence estimates.

[1]  J. Chassagneux,et al.  Numerical simulation of quadratic BSDEs , 2013, 1307.5741.

[2]  P. Briand,et al.  Simulation of BSDEs by Wiener Chaos Expansion , 2012, 1204.4137.

[3]  Smart expansion and fast calibration for jump diffusions , 2007, Finance Stochastics.

[4]  Jean-Philippe Bouchaud,et al.  Hedged Monte-Carlo: low variance derivative pricing with objective probabilities , 2000 .

[5]  Ben Zineb Tarik,et al.  Preliminary control variates to improve empirical regression methods , 2013 .

[6]  Adrien Richou,et al.  Étude théorique et numérique des équations différentielles stochastiques rétrogrades , 2010 .

[7]  Robert Denk,et al.  A forward scheme for backward SDEs , 2007 .

[8]  Emmanuel Gobet,et al.  L2-time regularity of BSDEs with irregular terminal functions , 2010 .

[9]  Dan Crisan,et al.  Solving Backward Stochastic Differential Equations Using the Cubature Method: Application to Nonlinear Pricing , 2010, SIAM J. Financial Math..

[10]  Emmanuel Gobet,et al.  Numerical simulation of BSDEs using empirical regression methods: theory and practice , 2005 .

[11]  Emmanuel Gobet,et al.  Error expansion for the discretization of backward stochastic differential equations , 2006, math/0602503.

[12]  E. Gobet,et al.  A regression-based Monte Carlo method to solve backward stochastic differential equations , 2005, math/0508491.

[13]  Hai-ping Shi Backward stochastic differential equations in finance , 2010 .

[14]  Dan Crisan,et al.  Sharp derivative bounds for solutions of degenerate semi-linear partial differential equations , 2012 .

[15]  Nicole El Karoui,et al.  Pricing Via Utility Maximization and Entropy , 2000 .

[16]  Emmanuel Gobet,et al.  Approximation of backward stochastic differential equations using Malliavin weights and least-squares regression , 2016, 1601.01186.

[17]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[18]  Christian Bender,et al.  Least-Squares Monte Carlo for Backward SDEs , 2012 .

[19]  Etienne Pardoux,et al.  A Survey of Möbius Groups , 1995 .

[20]  Jianfeng Zhang A numerical scheme for BSDEs , 2004 .

[21]  P. Turkedjiev Numerical methods for backward stochastic differential equations of quadratic and locally Lipschitz type , 2013 .

[22]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[23]  Christian Bender,et al.  Importance Sampling for Backward SDEs , 2010 .

[24]  Peter Imkeller,et al.  Path regularity and explicit convergence rate for BSDE with truncated quadratic growth , 2009, 0905.0788.

[25]  Emmanuel Gobet,et al.  Generalized fractional smoothness and Lp-variation of BSDEs with non-Lipschitz terminal condition , 2011, 1103.0371.

[26]  Thilo Moseler A Picard-type Iteration for Backward Stochastic Differential Equations : Convergence and Importance Sampling , 2010 .

[27]  P. Protter,et al.  Numberical Method for Backward Stochastic Differential Equations , 2002 .

[28]  P. Imkeller,et al.  Utility maximization in incomplete markets , 2005, math/0508448.

[29]  Plamen Turkedjiev,et al.  Two algorithms for the discrete time approximation of Markovian backward stochastic differential equations under local conditions , 2013, 1309.4378.

[30]  Gene H. Golub,et al.  Matrix computations , 1983 .

[31]  E. Gobet,et al.  Rate of convergence of an empirical regression method for solving generalized backward stochastic differential equations , 2006 .

[32]  Céline Labart,et al.  Solving BSDE with Adaptive Control Variate , 2010, SIAM J. Numer. Anal..

[33]  Adrien Richou,et al.  Numerical simulation of BSDEs with drivers of quadratic growth , 2010, 1001.0401.

[34]  Emmanuel Gobet,et al.  Preliminary control variates to improve empirical regression methods , 2013, Monte Carlo Methods Appl..

[35]  G. Guatteri,et al.  Weak existence and uniqueness for forward–backward SDEs , 2006 .

[36]  Adam Krzyzak,et al.  A Distribution-Free Theory of Nonparametric Regression , 2002, Springer series in statistics.

[37]  G. Pagès,et al.  A QUANTIZATION TREE METHOD FOR PRICING AND HEDGING MULTIDIMENSIONAL AMERICAN OPTIONS , 2005 .

[38]  B. Bouchard,et al.  Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations , 2004 .