Simplification techniques for maps in simplicial topology

This paper offers an algorithmic solution to the problem of obtaining ''economical'' formulae for some maps in Simplicial Topology, having, in principle, a high computational cost in their evaluation. In particular, maps of this kind are used for defining cohomology operations at the cochain level. As an example, we obtain explicit combinatorial descriptions of Steenrod kth powers exclusively in terms of face operators.

[1]  N. Steenrod Reduced Powers of Cohomology Classes , 1952 .

[2]  中村 得之,et al.  Cohomology Operations , 2019, The Norm Residue Theorem in Motivic Cohomology.

[3]  Pedro Real,et al.  A combinatorial method for computing Steenrod squares , 1999 .

[4]  N. Steenrod,et al.  Products of Cocycles and Extensions of Mappings , 1947 .

[5]  Samuel Eilenberg,et al.  On the Groups H(Π, n), I , 1953 .

[6]  Jon P. May Simplicial objects in algebraic topology , 1993 .

[7]  Samuel Eilenberg,et al.  On Products of Complexes , 1953 .

[8]  M. Barr Acyclic Models , 1996, Canadian Journal of Mathematics.

[9]  S. Klaus Cochain operations and subspace arrangements. , 2003 .

[10]  R. González,et al.  Geometric Objects and Cohomology Operations ? , 2002 .

[11]  D. R. Taunt On A-groups , 1949, Mathematical Proceedings of the Cambridge Philosophical Society.

[12]  Herbert Edelsbrunner,et al.  Topological persistence and simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[13]  Pedro Real,et al.  Computation of cohomology operations of finite simplicial complexes , 2001 .

[14]  J Adem,et al.  The Iteration of the Steenrod Squares in Algebraic Topology. , 1952, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Pedro Real,et al.  Homological perturbation theory and associativity , 2000 .

[16]  Julio Rubio García Homologie effective des espaces de lacets itérés: un logiciel , 1991 .

[17]  Saunders MacLane,et al.  On the Groups H(Π, n), II: Methods of Computation , 1954 .

[18]  Pedro Real,et al.  On the computability of the Steenrod squares , 1996, ANNALI DELL UNIVERSITA DI FERRARA.

[19]  L. Kristensen On Secondary Cohomology Operations. , 1963 .

[20]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .