Manipulation and Raman Spectroscopy with Optically Trapped Metal Nanoparticles Obtained by Pulsed Laser Ablation in Liquids

We investigate experimentally and theoretically optical trapping of metal nanoparticles and aggregates. In particular, we show how light forces can be used to trap individual gold nanoaggregates of controlled size and structure obtained by laser ablation synthesis in solution. Due to their surface charge, no agglomeration of isolated nanoparticles was observed during trapping experiments and reliable optical force measurements of isolated and aggregated nanoparticles was possible through an analysis of the Brownian motion in the trap. We show how the field-enhancement properties of these nanostructures enables surface-enhanced Raman spectroscopy of molecules adsorbed on aggregates optically trapped in a Raman tweezers setup. We finally discuss calculations of extinction and optical forces based on a full electromagnetic scattering theory for aggregated gold nanostructures where the occurrence of plasmon resonances at longer wavelength play a crucial role in the enhancement of the trapping forces.

[1]  Philippe Guyot-Sionnest,et al.  Optical trapping and alignment of single gold nanorods by using plasmon resonances. , 2006 .

[2]  G. Compagnini,et al.  A mass spectrometry and surface enhanced Raman spectroscopy study of the interaction between linear carbon chains and noble metals , 2009 .

[3]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[4]  C. Mirkin,et al.  Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. , 2002, Science.

[5]  E. Stelzer,et al.  Three‐dimensional high‐resolution particle tracking for optical tweezers by forward scattered light , 1999, Microscopy research and technique.

[6]  D. Grier A revolution in optical manipulation , 2003, Nature.

[7]  P. G. Gucciardi,et al.  Rotation detection in light-driven nanorotors. , 2009, ACS nano.

[8]  Steven M. Block,et al.  Optical trapping of metallic Rayleigh particles. , 1994, Optics letters.

[9]  G. Yang Laser ablation in liquids : Applications in the synthesis of nanocrystals , 2007 .

[10]  Pál Ormos,et al.  Complex micromachines produced and driven by light , 2001, CLEO 2002.

[11]  T. Scheper,et al.  Laser ablation-based one-step generation and bio-functionalization of gold nanoparticles conjugated with aptamers , 2010, Journal of nanobiotechnology.

[12]  Hongxing Xu,et al.  Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering , 1999 .

[13]  P. Denti,et al.  Radiation torque and force on optically trapped linear nanostructures. , 2008, Physical review letters.

[14]  Gianni Cardini,et al.  Surface-enhanced Raman spectra of pyridine and pyrazolide on silver colloids: chemical and electromagnetic effects , 2004 .

[15]  P. Jain,et al.  Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. , 2007, Nanomedicine.

[16]  H. Stark,et al.  Direct observation of hydrodynamic rotation-translation coupling between two colloidal spheres. , 2006, Physical review letters.

[17]  M. Meneghetti,et al.  Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. , 2009, Physical chemistry chemical physics : PCCP.

[18]  Rosalba Saija,et al.  Optical trapping of nonspherical particles in the T-matrix formalism , 2007 .

[19]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[20]  Rosalba Saija,et al.  Scattering from Model Nonspherical Particles: Theory and Applications to Environmental Physics , 2003 .

[21]  L. Oddershede,et al.  Expanding the optical trapping range of gold nanoparticles. , 2005, Nano letters.

[22]  Peter J. Pauzauskie,et al.  Tunable nanowire nonlinear optical probe , 2007, Nature.

[23]  Stefano Pagliara,et al.  Rotational dynamics of optically trapped nanofibers. , 2009, Optics express.

[24]  G. Compagnini,et al.  Vibrational and photoelectron investigation of amorphous fluorinated carbon films , 2007 .

[25]  O. M. Maragò,et al.  Photonic Force Microscopy: From Femtonewton Force Sensing to Ultra-Sensitive Spectroscopy , 2010 .

[26]  M. Meneghetti,et al.  Controlled size manipulation of free gold nanoparticles by laser irradiation and their facile bioconjugation , 2007 .

[27]  P. G. Gucciardi,et al.  Femtonewton force sensing with optically trapped nanotubes. , 2008, Nano letters.

[28]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[29]  Kunihiro Yamada,et al.  Estimation of Surface Oxide on Surfactant-Free Gold Nanoparticles Laser-Ablated in Water , 2007 .

[30]  Thomas Aabo,et al.  Efficient optical trapping and visualization of silver nanoparticles. , 2008, Nano letters.

[31]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[32]  Arthur Ashkin,et al.  Optical Trapping and Manipulation of Neutral Particles Using Lasers: A Reprint Volume With Commentaries , 2006 .

[33]  H. Girault,et al.  Enhancement of the Second Harmonic Response by Adsorbates on Gold Colloids: The Effect of Aggregation , 1999 .

[34]  M. Miki-Yoshida,et al.  Noble-metal nanoparticles directly conjugated to globular proteins. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[35]  Stephan Link,et al.  Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles , 1999 .

[36]  J. Koenig,et al.  Raman studies of bovine serum albumin , 1976, Biopolymers.

[37]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[38]  G. Compagnini,et al.  Size distribution and particle shape in silver colloids prepared by laser ablation in water , 2010 .

[39]  E. Wolf,et al.  Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[40]  R. Wannemacher,et al.  Failure of local Mie theory: optical spectra of colloidal aggregates , 2001 .

[41]  P. Hendra,et al.  The laser-Raman spectrum of pyridine adsorbed on oxide surfaces , 1971 .

[42]  J. Lombardi,et al.  Laser-Induced Growth of Monodisperse Silver Nanoparticles with Tunable Surface Plasmon Resonance Properties and a Wavelength Self-Limiting Effect , 2007 .

[43]  Romain Quidant,et al.  Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis. , 2009, Lab on a chip.

[44]  George C Schatz,et al.  TDDFT studies of absorption and SERS spectra of pyridine interacting with Au20. , 2006, The journal of physical chemistry. A.

[45]  E. Sacher,et al.  Surface Chemistry of Gold Nanoparticles Produced by Laser Ablation in Aqueous Media , 2004 .

[46]  J. Lindhard,et al.  ON THE PROPERTIES OF A GAS OF CHARGED PARTICLES , 1954 .

[47]  Norman R. Heckenberg,et al.  Colloquium: Momentum of an electromagnetic wave in dielectric media , 2007, 0710.0461.

[48]  Rosalba Saija,et al.  Optical trapping calculations for metal nanoparticles. Comparison with experimental data for Au and Ag spheres. , 2009, Optics express.

[49]  Francesco Bonaccorso,et al.  Brownian motion of graphene. , 2010, ACS nano.

[50]  Yoshihiro Takeda,et al.  Full Physical Preparation of Size-Selected Gold Nanoparticles in Solution: Laser Ablation and Laser-Induced Size Control , 2002 .

[51]  G. Volpe,et al.  Torque detection using Brownian fluctuations. , 2006, Physical review letters.

[52]  M. Meneghetti,et al.  Size Evaluation of Gold Nanoparticles by UV−vis Spectroscopy , 2009 .

[53]  S. Reihani,et al.  Optimized optical trapping of gold nanoparticles. , 2010, Optics express.

[54]  Alexander Rohrbach,et al.  Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory. , 2005, Physical review letters.