A time-, energy-, and cost-efficient way of preparing (MnFe)2(P,Si)-type magnetocaloric materials

[1]  E. Brück,et al.  Overview of magnetoelastic coupling in (Mn, Fe)2(P, Si)-type magnetocaloric materials , 2018, Rare Metals.

[2]  Jianli Wang,et al.  Magnetic and Structural Transitions Tuned through Valence Electron Concentration in Magnetocaloric Mn(Co1–xNix)Ge , 2018 .

[3]  O. Gutfleisch,et al.  A Matter of Size and Stress: Understanding the First‐Order Transition in Materials for Solid‐State Refrigeration , 2017 .

[4]  Y. Taguchi,et al.  Magnetocaloric Materials with Multiple Instabilities , 2017, Advanced materials.

[5]  A. Yan,et al.  Direct formation of NaZn13-structure La(Fe,Si)13 phase by directional solidification , 2017 .

[6]  L. Geng,et al.  Giant room-temperature inverse and conventional magnetocaloric effects in Ni–Mn–In alloys , 2016 .

[7]  N. van Dijk,et al.  Taming the First‐Order Transition in Giant Magnetocaloric Materials , 2014, Advanced materials.

[8]  V. Franco,et al.  The Magnetocaloric Effect and Magnetic Refrigeration Near Room Temperature: Materials and Models , 2012 .

[9]  G. D. de Wijs,et al.  Mixed Magnetism for Refrigeration and Energy Conversion , 2011, 1203.0556.

[10]  E. Bruck,et al.  From first-order magneto-elastic to magneto-structural transition in (Mn,Fe)1.95P0.50Si0.50 compounds , 2011, 1203.0555.

[11]  E. Brück,et al.  On the determination of the magnetic entropy change in materials with first-order transitions , 2009 .

[12]  K. Gschneidner,et al.  Recent developments in magnetocaloric materials , 2003 .