Solving the Pareto-improving toll problem via manifold suboptimization

[1]  A. C. Pigou Economics of welfare , 1920 .

[2]  H. H. Rosenbrock,et al.  An Automatic Method for Finding the Greatest or Least Value of a Function , 1960, Comput. J..

[3]  E. M. L. Beale,et al.  Nonlinear Programming: A Unified Approach. , 1970 .

[4]  Larry J. LeBlanc,et al.  AN ACCURATE AND EFFICIENT APPROACH TO EQUILIBRIUM TRAFFIC ASSIGNMENT ON CONGESTED NETWORKS , 1974 .

[5]  M. S. Bazaraa,et al.  Nonlinear Programming , 1979 .

[6]  R. Dorfman A Formula for the Gini Coefficient , 1979 .

[7]  D. Hearn,et al.  Convergence of the Frank-Wolfe method for certain bounded variable traffic assignment problems , 1981 .

[8]  Clermont Dupuis,et al.  An Efficient Method for Computing Traffic Equilibria in Networks with Asymmetric Transportation Costs , 1984, Transp. Sci..

[9]  David Kendrick,et al.  GAMS, a user's guide , 1988, SGNM.

[10]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[11]  M. Florian,et al.  THE NONLINEAR BILEVEL PROGRAMMING PROBLEM: FORMULATIONS, REGULARITY AND OPTIMALITY CONDITIONS , 1993 .

[12]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[13]  C. Daganzo A pareto optimum congestion reduction scheme , 1995 .

[14]  Bethany L. Nicholson,et al.  Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.

[15]  J. Bard,et al.  Nondifferentiable and Two-Level Mathematical Programming , 1996 .

[16]  William H. K. Lam,et al.  Optimal road tolls under conditions of queueing and congestion , 1996 .

[17]  D. Hearn,et al.  Solving Congestion Toll Pricing Models , 1998 .

[18]  Michal Kočvara,et al.  Nonsmooth approach to optimization problems with equilibrium constraints : theory, applications, and numerical results , 1998 .

[19]  M. Patriksson,et al.  SIDE CONSTRAINED TRAFFIC EQUILIBRIUM MODELS: TRAFFIC MANAGEMENT THROUGH LINK TOLLS. , 1998 .

[20]  Jonathan F. Bard,et al.  Practical Bilevel Optimization: Algorithms and Applications , 1998 .

[21]  Robert B. Dial,et al.  Minimal-revenue congestion pricing part I: A fast algorithm for the single-origin case , 1999 .

[22]  Carlos F. Daganzo,et al.  A Pareto Improving Strategy for the Time-Dependent Morning Commute Problem , 1999, Transp. Sci..

[23]  C. Lindsey,et al.  Traffic Congestion And Congestion Pricing , 2000 .

[24]  Stefan Scholtes,et al.  Mathematical Programs with Complementarity Constraints: Stationarity, Optimality, and Sensitivity , 2000, Math. Oper. Res..

[25]  Robert B. Dial,et al.  MINIMAL-REVENUE CONGESTION PRICING PART II: AN EFFICIENT ALGORITHM FOR THE GENERAL CASE , 2000 .

[26]  David A. Hensher,et al.  Handbook of Transport Systems and Traffic Control , 2001 .

[27]  J. N. Hagstrom,et al.  Characterizing Braess's paradox for traffic networks , 2001, ITSC 2001. 2001 IEEE Intelligent Transportation Systems. Proceedings (Cat. No.01TH8585).

[28]  Michel Gendreau,et al.  Transportation and network analysis : current trends : miscellanea in honor of Michael Florian , 2002 .

[29]  D. Hearn,et al.  A Toll Pricing Framework for Traffic Assignment Problems with Elastic Demand , 2002 .

[30]  P. Ferrari Road network toll pricing and social welfare , 2002 .

[31]  Michael Patriksson,et al.  A Mathematical Model and Descent Algorithm for Bilevel Traffic Management , 2002, Transp. Sci..

[32]  Erik T. Verhoef,et al.  SECOND-BEST CONGESTION PRICING IN GENERAL NETWORKS. HEURISTIC ALGORITHMS FOR FINDING SECOND-BEST OPTIMAL TOLL LEVELS AND TOLL POINTS , 2002 .

[33]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[34]  Xiaoning Zhang,et al.  The optimal cordon-based network congestion pricing problem , 2004 .

[35]  Agachai Sumalee,et al.  Optimal Road User Charging Cordon Design: A Heuristic Optimization Approach , 2004 .

[36]  Donald W. Hearn,et al.  Decomposition techniques for the minimum toll revenue problem , 2004, Networks.

[37]  Sven Leyffer,et al.  Solving mathematical programs with complementarity constraints as nonlinear programs , 2004, Optim. Methods Softw..

[38]  Donald W. Hearn,et al.  An MPEC approach to second-best toll pricing , 2004, Math. Program..

[39]  Akiyama Takamasa,et al.  Second-Best Congestion Pricing in Urban Space: Cordon Pricing and Its Alternatives , 2004 .

[40]  D. Hearn,et al.  A first best toll pricing framework for variable demand traffic assignment problems , 2005 .

[41]  T. D. Hau ECONOMIC FUNDAMENTALS OF ROAD PRICING: A DIAGRAMMATIC ANALYSIS, PART I—FUNDAMENTALS , 2005 .

[42]  When users of congested roads may view tolls as unjust , 2005 .

[43]  Noboru Harata,et al.  Difference Between Area-Based and Cordon-Based Congestion Pricing: Investigation by Trip-Chain-Based Network Equilibrium Model with Nonadditive Path Costs , 2006 .

[44]  Sven Leyffer,et al.  Local Convergence of SQP Methods for Mathematical Programs with Equilibrium Constraints , 2006, SIAM J. Optim..

[45]  Jane N. Hagstrom,et al.  Improving Traffic Flows at No Cost , 2006 .

[46]  A. Sumalee,et al.  Efficiency and equity comparison of cordon- and area-based road pricing schemes using a trip-chain equilibrium model , 2007 .

[47]  Yafeng Yin,et al.  Nonnegative Pareto-Improving Tolls with Multiclass Network Equilibria , 2009 .

[48]  Hai Yang,et al.  Pareto-improving and revenue-neutral congestion pricing schemes in two-mode traffic networks , 2009 .

[49]  Di Wu,et al.  Pareto-improving congestion pricing on multimodal transportation networks , 2011, Eur. J. Oper. Res..