Correlation between electron state density change and the electrical resistivity and magnetic permeability changes in the nanostructured powder of the NiMo alloy

[1]  Z. Zhong,et al.  Electrodeposition mechanism of NiMoP alloy in the solution of ammoniac citrate , 2010 .

[2]  L. Rafailović,et al.  Correlation Between the Crystallization Process and Change in Electron Density of States in Amorphous Powder of the Ni80Co20 Alloy , 2006 .

[3]  L. Rafailović,et al.  The influence of structural changes on electrical and magnetic characteristics of amorphous powder of the nixmoy alloy , 2006 .

[4]  S. Paschen,et al.  Non-linear optical effects and transport phenomena of magnetic semiconductors Pb1−xPrxTe near the semiconductor–metal phase transformation , 2005 .

[5]  Sasha Omanovic,et al.  Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium , 2005 .

[6]  S. H. Domingues,et al.  Characterisation of electrochemically deposited Ni–Mo alloy coatings , 2004 .

[7]  L. Rafailović,et al.  Hydrogen Absorption and Desorption Kinetics in Nickel and Cobalt Alloy Powder , 2004 .

[8]  L. Rafailović,et al.  The effect of temperature on structural changes of NI55CO45 amorphous powder , 2004 .

[9]  M. Ristić,et al.  Corelation between the crystallisation process and change in thermoelectromotive force for the amorphous alloy Fe89.8Ni1.5Si5.2B3C0.5 , 2003 .

[10]  V. Radmilović,et al.  The effect of particle structure on apparent density of electrolytic copper powder , 2001 .

[11]  M. Pavlović,et al.  The Effect of Some Parameters of Electrolysis on Apparent Density of Electrolytic Copper Powder in Galvanostatic Deposition , 2000 .

[12]  V. Portnoy,et al.  Phase transformations in nanocrystalline mechanically alloyed Ni-Mo powders , 1999 .

[13]  E. Chassaing,et al.  Electrochemical investigation of the Ni–Cu–Mo electrodeposition system , 1997 .

[14]  E. Podlaha,et al.  Induced Codeposition III. Molybdenum Alloys with Nickel, Cobalt, and Iron , 1997 .

[15]  E. Podlaha,et al.  Induced Codeposition II. A Mathematical Model Describing the Electrodeposition of Ni‐Mo Alloys , 1996 .

[16]  J. McKittrick,et al.  Rapid solidification processing , 1994 .

[17]  E. Chassaing,et al.  Mechanism of nickel-molybdenum alloy electrodeposition in citrate electrolytes , 1989 .

[18]  M. Šušić,et al.  Correlation between the thermal change of resistance and the process of devitrification of glassy titanium based alloys , 1988 .

[19]  I. A. Raj,et al.  Characterization of nickel-molybdenum and nickel-molybdenum-iron alloy coatings as cathodes for alkaline water electrolysers , 1988 .

[20]  M. Šušić Kinetics of thermal devitrification of some titanium amorphous alloys , 1987 .

[21]  C. Suryanarayana,et al.  Rapidly Quenched Metals , 1980 .

[22]  Hisaaki Fukushima,et al.  Role of Iron-group Metals in the Induced Codeposition of Molybdenum from Aqueous Solution , 1978 .

[23]  Brian E. Conway,et al.  Modern Aspects of Electrochemistry , 1974 .

[24]  N. Ibl Zur Kenntnis der elektrolytischen Abscheidung von Metallpulvern: Die quantitativen Zusammenhänge mit den Transportvorgängen bei natürlicher Konvektion , 1954 .

[25]  N. Mott,et al.  Electronic Processes In Non-Crystalline Materials , 1940 .