Unifying the model theory of first-order and second-order arithmetic via

Abstract We develop machinery to make the Arithmetized Completeness Theorem more effective in the study of many models of I Δ 0 + B Σ 1 + exp , including all countable ones, by passing on to the conservative extension WKL 0 ⁎ of I Δ 0 + B Σ 1 + exp . Our detailed study of the model theory of WKL 0 ⁎ leads to the simplification and improvement of many results in the model theory of Peano arithmetic and its fragments pertaining to the construction of various types of end extensions and initial segments.

[1]  Harvey M. Friedman,et al.  Countable models of set theories , 1973 .

[2]  Dan E. Willard,et al.  How to extend the semantic tableaux and cut-free versions of the second incompleteness theorem almost to Robinson's arithmetic q , 2002, Journal of Symbolic Logic.

[3]  Zofia Adamowicz On Maximal Theories , 1991, J. Symb. Log..

[4]  V. Orevkov Lower bounds for increasing complexity of derivations after cut elimination , 1982 .

[5]  Ali Enayat,et al.  A standard model of Peano arithmetic with no conservative elementary extension , 2008, Ann. Pure Appl. Log..

[6]  Stephen G. Simpson,et al.  Factorization of polynomials and Σ10 induction , 1986, Ann. Pure Appl. Log..

[7]  James H. Schmerl End Extensions of Models of Arithmetic , 1992, Notre Dame J. Formal Log..

[8]  Jeremy Avigad Formalizing Forcing Arguments in Subsystems of Second-Order Arithmetic , 1996, Ann. Pure Appl. Log..

[9]  Charalampos Cornaros,et al.  On two problems concerning end extensions , 2008, Arch. Math. Log..

[10]  Carl G. Jockusch,et al.  On the strength of Ramsey's theorem for pairs , 2001, Journal of Symbolic Logic.

[11]  Klaas Pieter Hart,et al.  Open Problems , 2022, Dimension Groups and Dynamical Systems.

[12]  Rineke Verbrugge,et al.  A small reflection principle for bounded arithmetic , 1994, Journal of Symbolic Logic.

[13]  John L. Bell,et al.  A course in mathematical logic , 1977 .

[14]  Denis R. Hirschfeldt Slicing the Truth - On the Computable and Reverse Mathematics of Combinatorial Principles , 2014, Lecture Notes Series / Institute for Mathematical Sciences / National University of Singapore.

[15]  Kazuyuki Tanaka The Self-Embedding Theorem of WKL0 and a Non-Standard Method , 1997, Ann. Pure Appl. Log..

[16]  Petr Hájek,et al.  Metamathematics of First-Order Arithmetic , 1993, Perspectives in mathematical logic.

[17]  Jeff B. Paris,et al.  On the scheme of induction for bounded arithmetic formulas , 1987, Ann. Pure Appl. Log..

[18]  Julia F. Knight,et al.  Models of Arithmetic and Closed Ideals , 1982, J. Symb. Log..

[19]  J. Paris,et al.  ∑n-Collection Schemas in Arithmetic , 1978 .

[20]  William W. Tait,et al.  Normal derivability in classical logic , 1968 .

[21]  Stephen G. Simpson,et al.  Subsystems of second order arithmetic , 1999, Perspectives in mathematical logic.

[22]  Lev D. Beklemishev,et al.  A proof-theoretic analysis of collection , 1998, Arch. Math. Log..

[23]  Craig Smorynski,et al.  Recursively saturated nonstandard models of arithmetic , 1981, Journal of Symbolic Logic.

[24]  Theodore A. Slaman Σn-bounding and Δn-induction , 2004 .

[25]  A. Mostowski Models of axiomatic systems , 1952 .

[27]  Jan Krajícek,et al.  On the structure of initial segments of models of arithmetic , 1989, Arch. Math. Log..

[28]  Jeff B. Paris,et al.  A Note on a Theorem of H. FRIEDMAN , 1988, Math. Log. Q..

[29]  Leszek Aleksander Kolodziejczyk,et al.  Truth definitions without exponentiation and the Σ1 collection scheme , 2012, The Journal of Symbolic Logic.

[30]  Samuel R. Buss A conservation result concerning bounded theories and the collection axiom , 1987 .

[31]  P. Pudlák On the length of proofs of finitistic consistency statements in first order theories , 1986 .

[32]  Peter Clote,et al.  Partition relations in arithmetic , 1985 .

[33]  Theodore A. Slaman Σ_{}-bounding and Δ_{}-induction , 2004 .

[34]  Georg Kreisel,et al.  Reflection Principles and Their Use for Establishing the Complexity of Axiomatic Systems , 1968 .

[35]  Zofia Adamowicz,et al.  EXISTENTIALLY CLOSED MODELS IN THE FRAMEWORK OF ARITHMETIC , 2016, The Journal of Symbolic Logic.

[36]  D. Scott Algebras of sets binumerable in complete extensions of arithmetic , 1962 .

[37]  A. J. Wilkie,et al.  On the theories of end-extensions of models of arithmetic , 1977 .

[38]  James H. Schmerl,et al.  The Structure of Models of Peano Arithmetic , 2006 .

[39]  Haim Gaifman,et al.  A note on models and submodels of arithmetic , 1972 .

[40]  Takeshi Yamazaki,et al.  Some conservation results on week König's lemma , 2002, Ann. Pure Appl. Log..

[42]  Costas Dimitracopoulos,et al.  End Extensions of Models of Weak Arithmetic Theories , 2016, Notre Dame J. Formal Log..

[43]  Albert Visser An inside view of EXP or The closed fragment of the provability logic of ΙΔo+Ω₁ with a propositional constant for EXP , 1989 .

[44]  Ali Enayat,et al.  Marginalia on a Theorem of Woodin , 2017, J. Symb. Log..

[45]  Zofia Adamowicz End-extending models of $IΔ_0 + exp + ΒΣ_1$ , 1990 .

[46]  C. Smorynski Lectures on Nonstandard Models of Arithmetic: Commemorating Guiseppe Peano , 1984 .

[47]  C. Smorynski,et al.  Cofinal extension preserves recursive saturation , 1980 .

[48]  Petr Hájek,et al.  On some formalized conservation results in arithmetic , 1990, Arch. Math. Log..

[49]  James H. Schmerl Subsets coded in elementary end extensions , 2014, Arch. Math. Log..

[51]  Richard Kaye Models of Peano arithmetic , 1991, Oxford logic guides.

[52]  Philipp Gerhardy Refined Complexity Analysis of Cut Elimination , 2003, CSL.

[53]  Ali Enayat,et al.  Automorphisms of models of bounded arithmetic , 2006 .

[54]  Albert Visser On the Σ10-Conservativity of Σ10-Completeness , 1991, Notre Dame J. Formal Log..

[55]  Ken McAloon Completeness theorems, incompleteness theorems and models of arithmetic , 1978 .

[56]  Roman Kossak,et al.  Subsets of models of arithmetic , 1992, Arch. Math. Log..

[57]  Jeff B. Paris,et al.  Some conservation results for fragments of arithmetic , 1981 .

[58]  R. Statman Lower bounds on Herbrand’s theorem , 1979 .

[59]  Costas Dimitracopoulos A Generalization of a Theorem of H. Friedman , 1985, Math. Log. Q..

[60]  D. Guaspari,et al.  Partially conservative extensions of arithmetic , 1979 .

[61]  Jeff B. Paris,et al.  On the Existence of end Extensions of Models of Bounded Induction , 1989 .

[62]  J. Ressayre Models with compactness properties relative to an admissible language , 1977 .

[63]  Jeff B. Paris On models of arithmetic , 1972 .

[64]  Stephen G. Simpson 0 Sets and Models of WKL0 , 2013 .

[65]  Zofia Adamowicz A Sharp Version of the Bounded Matijasevich Conjecture and the End-Extension Problem , 1992, J. Symb. Log..

[66]  Zofia Adamowicz A Contribution to the End-Extension Problem and the Pi1 Conservativeness Problem , 1993, Ann. Pure Appl. Log..