Estimation of solutions of observable nonlinear systems with disturbances

A family of continuous-time observable nonlinear systems with input and output is considered. A new technique of estimation of the state variables is proposed. It relies on the use of past values of the output, as done to construct some observers which converge in finite time, and on a recent technical result pertaining to the theory of the monotone systems. It applies to systems with additive disturbances and disturbances in the output. The nonlinear terms are not supposed to be globally Lipschitz, but it is requested that they depend only on the input and output variables.

[1]  Darren M. Dawson,et al.  Integrator backstepping control of a brush DC motor turning a robotic load , 1994, IEEE Trans. Control. Syst. Technol..

[2]  Denis V. Efimov,et al.  Interval State Estimation for a Class of Nonlinear Systems , 2012, IEEE Transactions on Automatic Control.

[3]  Frédéric Mazenc,et al.  Interval observer composed of observers for nonlinear systems , 2014, 2014 European Control Conference (ECC).

[4]  C. F. Long,et al.  Influence of the manufacturing process on the scheduling problem , 1976 .

[5]  Christophe Combastel,et al.  A Stable Interval Observer for LTI Systems with No Multiple Poles , 2011 .

[6]  D. Luenberger Observers for multivariable systems , 1966 .

[7]  J. Gouzé,et al.  Interval observers for uncertain biological systems , 2000 .

[8]  F. Schweppe Recursive state estimation: Unknown but bounded errors and system inputs , 1967 .

[9]  Ricardo G. Sanfelice,et al.  A robust finite-time convergent hybrid observer for linear systems , 2013, 52nd IEEE Conference on Decision and Control.

[10]  G. Besançon An Overview on Observer Tools for Nonlinear Systems , 2007 .

[11]  Angelika Bayer,et al.  Ellipsoidal Calculus For Estimation And Control , 2016 .

[12]  F. Allgower,et al.  An impulsive observer that estimates the exact state of a linear continuous-time system in predetermined finite time , 2007, 2007 Mediterranean Conference on Control & Automation.

[13]  Olivier Bernard,et al.  Exponentially Stable Interval Observers for Linear Systems with Delay , 2012, SIAM J. Control. Optim..

[14]  D. Bertsekas,et al.  Recursive state estimation for a set-membership description of uncertainty , 1971 .

[15]  Denis V. Efimov,et al.  An effective method to interval observer design for time-varying systems , 2014, Autom..

[16]  Wilfrid Perruquetti,et al.  Finite-Time Observers: Application to Secure Communication , 2008, IEEE Transactions on Automatic Control.

[17]  Antonio Vicino,et al.  Optimal estimation theory for dynamic systems with set membership uncertainty: An overview , 1991, Autom..

[18]  Denis Dochain,et al.  Design of a nonlinear finite-time converging observer for a class of nonlinear systems , 2007 .

[19]  Salah Laghrouche,et al.  Finite time observer design for a class of nonlinear systems with unknown inputs , 2013, 2013 American Control Conference.

[20]  Robert Engel,et al.  A continuous-time observer which converges in finite time , 2002, IEEE Trans. Autom. Control..

[21]  W. Haddad,et al.  Nonnegative and Compartmental Dynamical Systems , 2010 .

[22]  Frédéric Mazenc,et al.  Interval observers for discrete-time systems , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[23]  Olivier Bernard,et al.  Interval observers for linear time-invariant systems with disturbances , 2011, Autom..