Recognition of anions using urea and thiourea substituted calixarenes: A density functional theory study of non-covalent interactions

Abstract Designing of new calixarene receptors for the selective binding of anions is an age-old concept; even though expected outcomes from this field are at premature stage. Herein, we have performed quantum chemical calculations to provide structural basis of anion binding with urea and thiourea substituted calixarenes (1, 2, and 3). In particular, spherical halides (F−, Cl−, Br−) and linear anions (CN−, N3−, SCN−) were modelled for calculating binding energies with receptor 1, 2 and 3 followed by their marked IR vibrations; taking the available experimental information into account. We found that the thiourea substitutions have better capability to stabilize the anions. Results have suggested that the structural behaviour of macrocyclic motifs were responsible for displaying the anion binding potentials. Moreover, second order “charge transfer” interactions of n‐σ∗NH and n‐σ∗OH type along the H‐bond axis played critical role in developing hydrogen bonds. The present work also examines the role of non-covalent interactions (NCI) and their effects on thermodynamic and chemical-reactivity descriptors.

[1]  L. Meng,et al.  Calix[4]arenes containing thiourea and amide moieties: neutral receptors towards α,ω-dicarboxylate anions , 2004 .

[2]  Hans-Jörg Schneider,et al.  Binding mechanisms in supramolecular complexes. , 2009, Angewandte Chemie.

[3]  Margaret C. Etter,et al.  Encoding and decoding hydrogen-bond patterns of organic compounds , 1990 .

[4]  V. Barone,et al.  Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model , 1998 .

[5]  R. Parr,et al.  Absolute hardness: companion parameter to absolute electronegativity , 1983 .

[6]  Maurizio Licchelli,et al.  Urea vs. thiourea in anion recognition. , 2005, Organic & biomolecular chemistry.

[7]  F. Diederich,et al.  Interactions with aromatic rings in chemical and biological recognition. , 2003, Angewandte Chemie.

[8]  J. Steed,et al.  Hydrogen bonding effects in anion binding calixarenes , 2014 .

[9]  B. Moyer,et al.  Structural criteria for the rational design of selective ligands: convergent hydrogen bonding sites for the nitrate anion. , 2004, Journal of the American Chemical Society.

[10]  T. Yamato,et al.  Synthesis, Conformations and Inclusion Properties of Hexahomotrioxacalix[3]arene Triamide Derivatives having Hydrogen-bonding Groups , 2001 .

[11]  Pratim K. Chattaraj,et al.  Update 1 of: Electrophilicity Index , 2007 .

[12]  Pratim K. Chattaraj,et al.  Chemical reactivity theory : a density functional view , 2009 .

[13]  A. Manikandan,et al.  Vibrational spectroscopic, UV-Vis, molecular structure and NBO analysis of Rabeprazole , 2017 .

[14]  M. Athar,et al.  Turn-off fluorescence probe for the selective determination of pendimethalin using a mechanistic docking model of novel oxacalix[4]arene , 2016 .

[15]  P. Metrangolo,et al.  Halogen bonding: a paradigm in supramolecular chemistry. , 2001, Chemistry.

[16]  Timothy Clark,et al.  σ-Holes: σ-Holes , 2013 .

[17]  De‐Xian Wang,et al.  Anion-π interactions: generality, binding strength, and structure. , 2013, Journal of the American Chemical Society.

[18]  S. McDowell Sigma-hole cooperativity in anionic [FX⋯CH3⋯YF]− (X, Y = Cl, Br) complexes , 2014 .

[19]  Philip A. Gale,et al.  Anion-binding modes in a macrocyclic amidourea. , 2006, Chemical communications.

[20]  M. Y. Lone,et al.  Investigation of structural and conformational equilibrium of Oxacalix[4]arene: A density functional theory approach , 2017 .

[21]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[22]  Amitava Das,et al.  Efficient and simple colorimetric fluoride ion sensor based on receptors having urea and thiourea binding sites. , 2004, Organic letters.

[23]  H. Ågren,et al.  Recent progress in quantum chemistry of hetero[8]circulenes , 2017 .

[24]  M. Athar,et al.  Efficiently functionalized oxacalix[4]arenes: Synthesis, characterization and exploration of their biological profile as novel HDAC inhibitors. , 2016, Bioorganic & medicinal chemistry letters.

[25]  Amitava Das,et al.  A density functional study towards the preferential binding of anions to urea and thiourea , 2007 .

[26]  D. A. Dougherty,et al.  The Cationminus signpi Interaction. , 1997, Chemical reviews.

[27]  S. P. Webb,et al.  Anion-water clusters A-(H2O)1-6, A = OH, F, SH, Cl, and Br. An effective fragment potential test case , 2003 .

[28]  A turn-off fluorescence sensor for insensitive munition using anthraquinone-appended oxacalix[4]arene and its computational studies , 2017 .

[29]  J. Sessler,et al.  Conformational features and anion-binding properties of calix[4]pyrrole: a theoretical study. , 2001, The Journal of organic chemistry.

[30]  F. Allen The Cambridge Structural Database: a quarter of a million crystal structures and rising. , 2002, Acta crystallographica. Section B, Structural science.

[31]  A. Frontera,et al.  Putting anion-π interactions into perspective. , 2011, Angewandte Chemie.

[32]  M. Y. Lone,et al.  Theoretical assessment of calix[n]arene as drug carriers for second generation tyrosine kinase inhibitors , 2017 .

[33]  G. Shankarling,et al.  Quinoline-based chemosensor for fluoride and acetate: A combined experimental and DFT study , 2014 .

[34]  Pierangelo Metrangolo,et al.  Halogen bonding in halocarbon-protein complexes: a structural survey. , 2011, Chemical Society reviews.

[35]  J. Steed,et al.  Anion hydrogen bonding from a ‘revealed’ urea ligand , 2016 .

[36]  Anthony C Legon,et al.  The halogen bond: an interim perspective. , 2010, Physical chemistry chemical physics : PCCP.

[37]  Clara Viñas,et al.  Nature of intramolecular interactions in hypercoordinate C-substituted 1,2-dicarba- closo -dodecaboranes with short P⋯P distances , 2007 .

[38]  R. Galindo-Murillo,et al.  Calix[n]arene-based drug carriers: A DFT study of their electronic interactions with a chemotherapeutic agent used against leukemia , 2014 .

[39]  D. Quiñonero,et al.  Relevant anion-π interactions in biological systems: the case of urate oxidase. , 2011, Angewandte Chemie.

[40]  T. Steiner The hydrogen bond in the solid state. , 2002, Angewandte Chemie.

[41]  Jean-Philip Piquemal,et al.  NCIPLOT: a program for plotting non-covalent interaction regions. , 2011, Journal of chemical theory and computation.

[42]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[43]  W. L. Jorgensen,et al.  Monte Carlo Investigations of Selective Anion Complexation by a Bis(phenylurea) p-tert-Butylcalix[4]arene , 1998 .

[44]  Philip A. Gale,et al.  Pyrrolic and polypyrrolic anion binding agents , 2003 .

[45]  Laura Pirondini,et al.  New Tetrafunctionalized Cone Calix[4]arenes as Neutral Hosts for Anion Recognition , 2000 .

[46]  M. Athar,et al.  Sensing of Ce(III) using di-naphthoylated oxacalix[4]arene via realistic simulations and experimental studies , 2018 .

[47]  F. Pichierri Effect of fluorine substitution in calix[4]pyrrole: A DFT study , 2008 .

[48]  D. Reinhoudt,et al.  Supramolecular chemistry in water. , 2007, Angewandte Chemie.

[49]  W. Vogt,et al.  Hydrogen bonded homo- and heterodimers of tetra urea derivatives of calix[4]arenes , 1996 .

[50]  Amitava Das,et al.  Urea and thiourea based efficient colorimetric sensors for oxyanions , 2005 .

[51]  H. A. Duarte,et al.  Study of angiotensin-(1–7) vasoactive peptide and its β-cyclodextrin inclusion complexes: Complete sequence-specific NMR assignments and structural studies , 2007, Peptides.

[52]  Giovanni Scalmani,et al.  Energies, structures, and electronic properties of molecules in solution with the C‐PCM solvation model , 2003, J. Comput. Chem..

[53]  F. J. Luque,et al.  Theoretical study of anion binding to calix[4]pyrrole: the effects of solvent, fluorine substitution, cosolute, and water traces. , 2002, Journal of the American Chemical Society.

[54]  Gautam R. Desiraju,et al.  The Weak Hydrogen Bond: In Structural Chemistry and Biology , 1999 .

[55]  M. Yáñez,et al.  The Role of Chalcogen–Chalcogen Interactions in the Intrinsic Basicity and Acidity of -Chalcogenovinyl(thio)aldehydes HC(X)CHCHCYH (X=O, S; Y=Se, Te) , 2002 .

[56]  D. J. Rush,et al.  Solvent effects on the thioamide rotational barrier: an experimental and theoretical study. , 2001, Journal of the American Chemical Society.

[57]  McMahon,et al.  An experimental and Ab initio study of the nature of the binding in gas-phase complexes of sodium ions , 2000, Chemistry.

[58]  Jason J. Davis,et al.  Anion recognition and redox sensing amplification by self-assembled monolayers of 1,1'bis(alkyl-N-amido)ferrocene. , 2002, Chemical communications.

[59]  M. Scholfield,et al.  Halogen bonding (X‐bonding): A biological perspective , 2013, Protein science : a publication of the Protein Society.

[60]  M. Athar,et al.  Quinoline appended oxacalixarene as turn-off fluorescent probe for the selective and sensitive determination of Cu 2+ ions: A combined experimental and DFT study , 2017 .

[61]  R. Parr,et al.  Electronegativity: The density functional viewpoint , 1978 .

[62]  D. Reinhoudt,et al.  Urea-derivatized p-tert-butylcalix[4]arenes: neutral ligands for selective anion complexation , 1994 .

[63]  Philip A. Gale,et al.  Anion Recognition and Sensing: The State of the Art and Future Perspectives. , 2001, Angewandte Chemie.

[64]  C. P. Rao,et al.  Differential Recognition of Anions with Selectivity towards F(-) by a Calix[6]arene-Thiourea Conjugate Investigated by Spectroscopy, Microscopy, and Computational Modeling by DFT. , 2016, Chemistry.

[65]  J. Dobado,et al.  Study by fluorescence of calix[4]arenes bearing heterocycles with anions: highly selective detection of iodide , 2014, Journal of Inclusion Phenomena and Macrocyclic Chemistry.

[66]  S. Dalgarno,et al.  Transition Metal Complexes of Calix[4]arene: Theoretical Investigations into Small Guest Binding within the Host Cavity. , 2016, The journal of physical chemistry. A.

[67]  Philip A. Gale,et al.  Calix[4]pyrrole as a chloride anion receptor: solvent and countercation effects. , 2006, Journal of the American Chemical Society.

[68]  Oren A Scherman,et al.  Chemical complexity--supramolecular self-assembly of synthetic and biological building blocks in water. , 2010, Chemical Society reviews.

[69]  A. Frontera,et al.  Computational study of anion recognition based on tetrel and hydrogen bonding interaction by calix[4]pyrrole derivatives , 2014 .

[70]  G. Cavallo,et al.  Halogen bonding: a general route in anion recognition and coordination. , 2010, Chemical Society reviews.

[71]  M. Tabrizchi,et al.  Theoretical study on the mechanism and kinetics of atmospheric reactions NH2OH + OOH and NH2CH3 + OOH , 2014 .

[72]  Timothy Clark,et al.  Halogen bonding and other σ-hole interactions: a perspective. , 2013, Physical chemistry chemical physics : PCCP.

[73]  David N. Reinhoudt,et al.  Noncovalent Synthesis Using Hydrogen Bonding. , 2001, Angewandte Chemie.

[74]  P. Bhattacharyya,et al.  DFT study on host-guest interaction in chitosan–amino acid complexes , 2017 .

[75]  M. Erdélyi,et al.  Halogen bonding in solution. , 2012, Chemical Society reviews.

[76]  R. Parr,et al.  Principle of maximum hardness , 1991 .