Flexible Bayesian Dynamic Modeling of Covariance and Correlation Matrices
暂无分享,去创建一个
[1] Xiao-Li Meng,et al. Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage , 2000 .
[2] Christopher Bingham. Distribution on the Sphere , 1980 .
[3] R. R. Hocking,et al. Algorithm AS 53: Wishart Variate Generator , 1972 .
[4] D. Brigo,et al. Parameterizing correlations: a geometric interpretation , 2007 .
[5] Van Der Vaart,et al. Adaptive Bayesian estimation using a Gaussian random field with inverse Gamma bandwidth , 2009, 0908.3556.
[6] Andrew Gordon Wilson,et al. Generalised Wishart Processes , 2010, UAI.
[7] Adrian E. Raftery,et al. Inference in model-based cluster analysis , 1997, Stat. Comput..
[8] Andrew Gelman,et al. The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..
[9] T. W. Anderson. An Introduction to Multivariate Statistical Analysis , 1959 .
[10] R. Tibshirani,et al. Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.
[11] Chuanhai Liu. Bartlett's decomposition of the posterior distribution of the covariance for normal monotone ignorable missing data , 1993 .
[12] M. Girolami,et al. Geodesic Monte Carlo on Embedded Manifolds , 2013, Scandinavian journal of statistics, theory and applications.
[13] H. Ombao,et al. SLEX Analysis of Multivariate Nonstationary Time Series , 2005 .
[14] R. Kass,et al. Nonconjugate Bayesian Estimation of Covariance Matrices and its Use in Hierarchical Models , 1999 .
[15] M. Daniels. A prior for the variance in hierarchical models , 1999 .
[16] B. Shahbaba,et al. Geodesic Lagrangian Monte Carlo over the space of positive definite matrices: with application to Bayesian spectral density estimation , 2016, Journal of statistical computation and simulation.
[17] Tom Leonard,et al. Bayesian Inference for a Covariance Matrix , 1992 .
[18] Raquel Prado,et al. Sequential estimation of mixtures of structured autoregressive models , 2013, Comput. Stat. Data Anal..
[19] S. Duane,et al. Hybrid Monte Carlo , 1987 .
[20] Martin A. Lindquist,et al. Evaluating dynamic bivariate correlations in resting-state fMRI: A comparison study and a new approach , 2014, NeuroImage.
[21] M. Girolami,et al. Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).
[22] G. Nason,et al. Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum , 2000 .
[23] Douglas M. Bates,et al. Unconstrained parametrizations for variance-covariance matrices , 1996, Stat. Comput..
[24] Yurii Nesterov,et al. Primal-dual subgradient methods for convex problems , 2005, Math. Program..
[25] Jan R. Magnus,et al. The Elimination Matrix: Some Lemmas and Applications , 1980, SIAM J. Algebraic Discret. Methods.
[26] J. Wishart. THE GENERALISED PRODUCT MOMENT DISTRIBUTION IN SAMPLES FROM A NORMAL MULTIVARIATE POPULATION , 1928 .
[27] Gabriel A. Elias,et al. Nonspatial sequence coding varies along the CA1 transverse axis , 2017, Behavioural Brain Research.
[28] Rainer Dahlhaus,et al. A Likelihood Approximation for Locally Stationary Processes , 2000 .
[29] Christopher Bingham. An Antipodally Symmetric Distribution on the Sphere , 1974 .
[30] Babak Shahbaba,et al. Spherical Hamiltonian Monte Carlo for Constrained Target Distributions , 2013, ICML.
[31] Michael A. West,et al. Evaluation and Comparison of EEG Traces: Latent Structure in Nonstationary Time Series , 1999 .
[32] Paul S. Dwyer,et al. Multivariate Maxima and Minima with Matrix Derivatives , 1969 .
[33] Martin A. Lindquist,et al. Dynamic connectivity regression: Determining state-related changes in brain connectivity , 2012, NeuroImage.
[34] N. Fortin,et al. A Sequence of events model of episodic memory shows parallels in rats and humans , 2014, Hippocampus.
[35] D. Dunson,et al. Bayesian Manifold Regression , 2013, 1305.0617.
[36] Harry van Zanten,et al. Information Rates of Nonparametric Gaussian Process Methods , 2011, J. Mach. Learn. Res..
[37] Merrill W. Liechty,et al. Bayesian correlation estimation , 2004 .
[38] M. Pourahmadi,et al. Distribution of random correlation matrices: Hyperspherical parameterization of the Cholesky factor , 2015 .
[39] J. Magnus,et al. The Commutation Matrix: Some Properties and Applications , 1979 .
[40] Tom Leonard,et al. The Matrix-Logarithmic Covariance Model , 1996 .
[41] Radford M. Neal. MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.
[42] A. Raftery,et al. Model-based Gaussian and non-Gaussian clustering , 1993 .
[43] Van Der Vaart,et al. Rates of contraction of posterior distributions based on Gaussian process priors , 2008 .
[44] J. M. Sanz-Serna,et al. Hybrid Monte Carlo on Hilbert spaces , 2011 .
[45] M. Pourahmadi. Joint mean-covariance models with applications to longitudinal data: Unconstrained parameterisation , 1999 .
[46] David B. Dunson,et al. Bayesian nonparametric covariance regression , 2011, J. Mach. Learn. Res..
[47] A. V. D. Vaart,et al. Convergence rates of posterior distributions for non-i.i.d. observations , 2007, 0708.0491.
[48] Iven Van Mechelen,et al. Visualizing Distributions of Covariance Matrices ∗ , 2011 .
[49] T. Rao. The Fitting of Non-stationary Time-series Models with Time-dependent Parameters , 1970 .
[50] Idris A. Eckley,et al. Estimating Time-Evolving Partial Coherence Between Signals via Multivariate Locally Stationary Wavelet Processes , 2014, IEEE Transactions on Signal Processing.
[51] Raquel Prado,et al. Multichannel electroencephalographic analyses via dynamic regression models with time‐varying lag–lead structure , 2001 .
[52] N. Fortin,et al. Nonspatial Sequence Coding in CA1 Neurons , 2016, The Journal of Neuroscience.
[53] Erling Sverdrup. Derivation of the Wishart distribution of the second order sample moments by straightforward integration of a multiple integral , 1947 .
[54] Chee-Ming Ting,et al. Estimating Effective Connectivity from fMRI Data Using Factor-based Subspace Autoregressive Models , 2015, IEEE Signal Processing Letters.
[55] M. Girolami,et al. Markov Chain Monte Carlo from Lagrangian Dynamics , 2015, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.
[56] R. Kass,et al. Shrinkage Estimators for Covariance Matrices , 2001, Biometrics.
[57] Ryan P. Adams,et al. Elliptical slice sampling , 2009, AISTATS.
[58] J. Berger,et al. Estimation of a Covariance Matrix Using the Reference Prior , 1994 .
[59] Babak Shahbaba,et al. A Bayesian supervised dual‐dimensionality reduction model for simultaneous decoding of LFP and spike train signals , 2017, Stat.
[60] R. Fisher. Dispersion on a sphere , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[61] Tullis C. Onstott,et al. Application of the Bingham distribution function in paleomagnetic studies , 1980 .
[62] Piotr Fryzlewicz,et al. Multiple‐change‐point detection for high dimensional time series via sparsified binary segmentation , 2015, 1611.08639.
[63] Hernando Ombao,et al. Modeling the Evolution of Dynamic Brain Processes During an Associative Learning Experiment , 2016 .
[64] Gérard Govaert,et al. Gaussian parsimonious clustering models , 1995, Pattern Recognit..