High-performance hybrid complementary logic inverter through monolithic integration of a MEMS switch and an oxide TFT.

A hybrid complementary logic inverter consisting of a microelectromechanical system switch as a promising alternative for the p-type oxide thin film transistor (TFT) and an n-type oxide TFT is presented for ultralow power integrated circuits. These heterogeneous microdevices are monolithically integrated. The resulting logic device shows a distinctive voltage transfer characteristic curve, very low static leakage, zero-short circuit current, and exceedingly high voltage gain.

[1]  Min-Wu Kim,et al.  An Electrostatically Actuated Stacked-Electrode MEMS Relay With a Levering and Torsional Spring for Power Applications , 2012, Journal of Microelectromechanical Systems.

[2]  H. Sirringhaus,et al.  Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a ‘sol–gel on chip’ process. , 2011, Nature materials.

[3]  Hideo Hosono,et al.  Sputtering formation of p-type SnO thin-film transistors on glass toward oxide complimentary circuits , 2010 .

[4]  E. Fortunato,et al.  Oxide Semiconductor Thin‐Film Transistors: A Review of Recent Advances , 2012, Advanced materials.

[5]  Burag Yaglioglu,et al.  High-mobility amorphous In2O3-10 wt %ZnO thin film transistors , 2006 .

[6]  David P. Norton,et al.  Fabrication of p-channel thin-film transistors using CuO active layers deposited at low temperature , 2010 .

[7]  T. K. Bhattacharyya,et al.  Development of a surface micro-machined binary logic inverter for ultra-low frequency MEMS sensor applications , 2010 .

[8]  Randy Hoffman,et al.  High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer , 2005 .

[9]  Elvira Fortunato,et al.  Where science fiction meets reality? With oxide semiconductors! , 2011 .

[10]  Jun‐Bo Yoon,et al.  An Extremely Low Contact-Resistance MEMS Relay Using Meshed Drain Structure and Soft Insulating Layer , 2011, Journal of Microelectromechanical Systems.

[11]  Dhananjay,et al.  Complementary inverter circuits based on p-SnO2 and n-In2O3 thin film transistors , 2008 .

[12]  Chienliu Chang,et al.  Innovative micromachined microwave switch with very low insertion loss , 2000 .

[13]  Hideo Hosono,et al.  Epitaxial growth of high mobility Cu2O thin films and application to p-channel thin film transistor , 2008 .

[14]  Dhananjay,et al.  Anomalous p -channel amorphous oxide transistors based on tin oxide and their complementary circuits , 2008 .

[15]  Po-Tsun Liu,et al.  Environment-dependent metastability of passivation-free indium zinc oxide thin film transistor after gate bias stress , 2009 .

[16]  Po-Tsun Liu,et al.  High-gain complementary inverter with InGaZnO/pentacene hybrid ambipolar thin film transistors , 2010 .

[17]  Jun‐Bo Yoon,et al.  A sub-1-volt nanoelectromechanical switching device. , 2013, Nature nanotechnology.

[18]  Pedro Barquinha,et al.  Thin-film transistors based on p-type Cu2O thin films produced at room temperature , 2010 .

[19]  Min-Wu Kim,et al.  Modeling, fabrication and demonstration of a rib-type cantilever switch with an extended gate electrode , 2011 .

[20]  Hideo Hosono,et al.  p-channel thin-film transistor using p-type oxide semiconductor, SnO , 2008 .

[21]  Didier Belot,et al.  An above IC MEMS RF switch , 2003 .

[22]  M. Mehregany,et al.  Contact physics of gold microcontacts for MEMS switches , 1998, Electrical Contacts - 1998. Proceedings of the Forty-Fourth IEEE Holm Conference on Electrical Contacts (Cat. No.98CB36238).

[23]  Yeon-Gon Mo,et al.  High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel , 2007 .

[24]  S. T. Patton,et al.  Fundamental studies of Au contacts in MEMS RF switches , 2005 .

[25]  Byron D. Gates Flexible Electronics , 2009, Science.

[26]  M. Miles,et al.  Some recent developments in SPM of crystalline polymers , 2001 .

[27]  Meiya Li,et al.  Top-Gate Low-Threshold Voltage $p\hbox{-}\hbox{Cu}_{2} \hbox{O}$ Thin-Film Transistor Grown on $\hbox{SiO}_{2}/ \hbox{Si}$ Substrate Using a High-$\kappa$ HfON Gate Dielectric , 2010, IEEE Electron Device Letters.

[28]  Ai Hua Chen,et al.  Phase and Optical Characterizations of Annealed SnO Thin Films and Their p-Type TFT Application , 2010 .

[29]  Frederic Nabki,et al.  A novel prototyping method for die-level monolithic integration of MEMS above-IC , 2013 .

[30]  Min-Wu Kim,et al.  A Complementary Dual-Contact MEMS Switch Using a “Zipping” Technique , 2014, Journal of Microelectromechanical Systems.

[31]  Jang-Hi Im,et al.  Characterization of the surface structural, mechanical, and thermal properties of benzocyclobutene dielectric polymers using scanned probe microscopy , 2001 .

[32]  H. Ohta,et al.  Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors , 2004, Nature.

[33]  Elad Alon,et al.  Mechanical Computing Redux: Relays for Integrated Circuit Applications , 2010, Proceedings of the IEEE.

[34]  J. Bryzek,et al.  Integrating microelectromechanical systems with integrated circuits , 2004, IEEE Instrumentation & Measurement Magazine.

[35]  Hideo Hosono,et al.  Ambipolar Oxide Thin‐Film Transistor , 2011, Advanced materials.

[36]  K. Weir,et al.  An all fibre white light interferometric strain measurement system , 2000 .

[37]  T. Kamiya,et al.  Effects of post‐annealing on (110) Cu2O epitaxial films and origin of low mobility in Cu2O thin‐film transistor , 2009 .

[38]  Ho-Nyeon Lee,et al.  p-Channel Tin Monoxide Thin Film Transistor Fabricated by Vacuum Thermal Evaporation , 2010 .

[39]  Pedro Barquinha,et al.  Transparent p-type SnOx thin film transistors produced by reactive rf magnetron sputtering followed by low temperature annealing , 2010 .

[40]  Randy Hoffman,et al.  Transparent thin-film transistors with zinc indium oxide channel layer , 2005 .