The trimeric periplasmic chaperone Skp of Escherichia coli forms 1:1 complexes with outer membrane proteins via hydrophobic and electrostatic interactions.

[1]  O. H. Lowry,et al.  Protein measurement with the Folin phenol reagent. , 1951, The Journal of biological chemistry.

[2]  C. Cantor,et al.  Biophysical Chemistry: Part II: Techniques for the Study of Biological Structure and Function , 1980 .

[3]  D. Wetlaufer,et al.  Refolding of bovine serum albumin and its proteolytic fragments. Regain of disulfide bonds, secondary structure, and ligand-binding ability. , 1981, The Journal of biological chemistry.

[4]  Y. Stierhof,et al.  An outer membrane protein (OmpA) of Escherichia coli K-12 undergoes a conformational change during export. , 1986, The Journal of biological chemistry.

[5]  E. Schiltz,et al.  A protein with sequence identity to Skp (FirA) supports protein translocation into plasma membrane vesicles of Escherichia coli , 1990, FEBS letters.

[6]  A. Ladokhin,et al.  Fluorescence study of a mutant cytochrome b5 with a single tryptophan in the membrane-binding domain. , 1991, Biochemistry.

[7]  J. Coleman,et al.  Mutations in firA, encoding the second acyltransferase in lipopolysaccharide biosynthesis, affect multiple steps in lipopolysaccharide biosynthesis , 1994, Journal of bacteriology.

[8]  A. Plückthun,et al.  Protein folding in the periplasm of Escherichia coli , 1994, Molecular microbiology.

[9]  O. Holst,et al.  Chemical structure of the core region of Escherichia coli J-5 lipopolysaccharide. , 1994, European journal of biochemistry.

[10]  U. Henning,et al.  Aperiplasmic protein (Skp) of Escherichia coli selectively binds a class of outer membrane proteins , 1996 .

[11]  U. Henning,et al.  A periplasmic protein (Skp) of Escherichia coli selectively binds a class of outer membrane proteins. , 1996, Molecular microbiology.

[12]  A. Plückthun,et al.  Selection for a periplasmic factor improving phage display and functional periplasmic expression , 1998, Nature Biotechnology.

[13]  W. C. Johnson,et al.  Principles of physical biochemistry , 1998 .

[14]  K. Diederichs,et al.  Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide. , 1998, Science.

[15]  O. Holst,et al.  Non-lamellar Structure and Negative Charges of Lipopolysaccharides Required for Efficient Folding of Outer Membrane Protein PhoE of Escherichia coli * , 1999, The Journal of Biological Chemistry.

[16]  L. Tamm,et al.  Time-resolved distance determination by tryptophan fluorescence quenching: probing intermediates in membrane protein folding. , 1999, Biochemistry.

[17]  J. Thomas-Oates,et al.  The structures of the carbohydrate backbones of the lipopolysaccharides from Escherichia coli rough mutants F470 (R1 core type) and F576 (R2 core type). , 1999, European journal of biochemistry.

[18]  R D Appel,et al.  Protein identification and analysis tools in the ExPASy server. , 1999, Methods in molecular biology.

[19]  Matthias Müller,et al.  Skp, a Molecular Chaperone of Gram-negative Bacteria, Is Required for the Formation of Soluble Periplasmic Intermediates of Outer Membrane Proteins* , 1999, The Journal of Biological Chemistry.

[20]  K. Diederichs,et al.  A conserved structural motif for lipopolysaccharide recognition by procaryotic and eucaryotic proteins. , 2000, Structure.

[21]  D. Missiakas,et al.  Characterization of the Escherichia coliςE Regulon* , 2001, The Journal of Biological Chemistry.

[22]  D. Missiakas,et al.  Characterization of the Escherichia coli s E Regulon * , 2001 .

[23]  T. Silhavy,et al.  Genetic Evidence for Parallel Pathways of Chaperone Activity in the Periplasm of Escherichia coli , 2001, Journal of bacteriology.

[24]  L. Tamm,et al.  Secondary and tertiary structure formation of the beta-barrel membrane protein OmpA is synchronized and depends on membrane thickness. , 2002, Journal of molecular biology.

[25]  R. Benz,et al.  Structural characterization of the fusobacterial non-specific porin FomA suggests a 14-stranded topology, unlike the classical porins. , 2002, Microbiology.

[26]  O. Holst,et al.  Folding and Insertion of the Outer Membrane Protein OmpA Is Assisted by the Chaperone Skp and by Lipopolysaccharide* , 2003, The Journal of Biological Chemistry.

[27]  D. Mckay,et al.  The Periplasmic Molecular Chaperone Protein SurA Binds a Peptide Motif That Is Characteristic of Integral Outer Membrane Proteins* , 2003, Journal of Biological Chemistry.

[28]  J. Tommassen,et al.  Role of a Highly Conserved Bacterial Protein in Outer Membrane Protein Assembly , 2003, Science.

[29]  M. Ehrmann,et al.  Proteolysis as a regulatory mechanism. , 2004, Annual review of genetics.

[30]  D. Mckay,et al.  Binding of phage‐display‐selected peptides to the periplasmic chaperone protein SurA mimics binding of unfolded outer membrane proteins , 2004, FEBS letters.

[31]  K. Hadian,et al.  The periplasmic E. coli chaperone Skp is a trimer in solution: biophysical and preliminary crystallographic characterization , 2004, Biological chemistry.

[32]  Piet Gros,et al.  Structure of the translocator domain of a bacterial autotransporter , 2004, The EMBO journal.

[33]  M. Sousa,et al.  Crystal structure of Skp, a prefoldin-like chaperone that protects soluble and membrane proteins from aggregation. , 2004, Molecular cell.

[34]  M. Colombini VDAC: The channel at the interface between mitochondria and the cytosol , 2004, Molecular and Cellular Biochemistry.

[35]  T. Silhavy,et al.  Quality control in the bacterial periplasm. , 2004, Biochimica et biophysica acta.

[36]  I. Korndörfer,et al.  Structure of the periplasmic chaperone Skp suggests functional similarity with cytosolic chaperones despite differing architecture , 2004, Nature Structural &Molecular Biology.

[37]  D. Marsh,et al.  Association of spin-labeled lipids with beta-barrel proteins from the outer membrane of Escherichia coli. , 2004, Biochemistry.

[38]  C. Gross,et al.  Regulation of the Escherichia coliσE‐dependent envelope stress response , 2004, Molecular microbiology.

[39]  R. Misra,et al.  YaeT (Omp85) affects the assembly of lipid‐dependent and lipid‐independent outer membrane proteins of Escherichia coli , 2005, Molecular microbiology.

[40]  C. Raetz,et al.  Loss of Outer Membrane Proteins without Inhibition of Lipid Export in an Escherichia coli YaeT Mutant* , 2005, Journal of Biological Chemistry.

[41]  J. Schneider-Mergener,et al.  The Periplasmic Chaperone SurA Exploits Two Features Characteristic of Integral Outer Membrane Proteins for Selective Substrate Recognition* , 2005, Journal of Biological Chemistry.

[42]  D. Marsh,et al.  Orientation of beta-barrel proteins OmpA and FhuA in lipid membranes. Chain length dependence from infrared dichroism. , 2005, Biochemistry.

[43]  John M. Walker,et al.  The Proteomics Protocols Handbook , 2005, Humana Press.

[44]  C. Hoogland,et al.  In The Proteomics Protocols Handbook , 2005 .

[45]  B. van den Berg,et al.  Crystal structure of the monomeric porin OmpG. , 2006, Journal of molecular biology.

[46]  Özkan Yildiz,et al.  Structure of the monomeric outer‐membrane porin OmpG in the open and closed conformation , 2006, The EMBO journal.

[47]  Pål Puntervoll,et al.  The major outer membrane protein of Fusobacterium nucleatum (FomA) folds and inserts into lipid bilayers via parallel folding pathways. , 2006, Journal of molecular biology.

[48]  J. Kleinschmidt Folding kinetics of the outer membrane proteins OmpA and FomA into phospholipid bilayers. , 2006, Chemistry and physics of lipids.

[49]  J. Tommassen,et al.  Assembly Factor Omp85 Recognizes Its Outer Membrane Protein Substrates by a Species-Specific C-Terminal Motif , 2006, PLoS biology.

[50]  Piotr Sliz,et al.  Structure and Function of an Essential Component of the Outer Membrane Protein Assembly Machine , 2007, Science.

[51]  J. Kleinschmidt Assembly of Integral Membrane Proteins from the Periplasm into the Outer Membrane , 2007 .

[52]  B. Clantin,et al.  Structure of the Membrane Protein FhaC: A Member of the Omp85-TpsB Transporter Superfamily , 2007, Science.

[53]  Thomas Meins,et al.  Correct folding of the beta-barrel of the human membrane protein VDAC requires a lipid bilayer. , 2007, Journal of molecular biology.