On finite difference approximation of a matrix-vector product in the Jacobian-free Newton-Krylov method
暂无分享,去创建一个
Tao Feng | Ju Wen | Hengbin An | Hengbin An | T. Feng | Ju Wen
[1] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[2] Valeria Simoncini,et al. Recent computational developments in Krylov subspace methods for linear systems , 2007, Numer. Linear Algebra Appl..
[3] William J. Rider,et al. Physics-Based Preconditioning and the Newton-Krylov Method for Non-equilibrium Radiation Diffusion , 2000 .
[4] C. Kelley. Iterative Methods for Linear and Nonlinear Equations , 1987 .
[5] Yousef Saad,et al. Convergence Theory of Nonlinear Newton-Krylov Algorithms , 1994, SIAM J. Optim..
[6] Homer F. Walker,et al. On Using Approximate Finite Differences in Matrix-Free Newton-Krylov Methods , 2008, SIAM J. Numer. Anal..
[7] Yousef Saad,et al. Hybrid Krylov Methods for Nonlinear Systems of Equations , 1990, SIAM J. Sci. Comput..
[8] Z. Bai,et al. A globally convergent Newton-GMRES method for large sparse systems of nonlinear equations , 2007 .
[9] D. Keyes,et al. Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .
[10] Xu Liu,et al. On choosing a nonlinear initial iterate for solving the 2-D 3-T heat conduction equations , 2009, J. Comput. Phys..
[11] Homer F. Walker,et al. NITSOL: A Newton Iterative Solver for Nonlinear Systems , 1998, SIAM J. Sci. Comput..
[12] James M. Ortega,et al. Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.
[13] D. A. Knoll,et al. New physics-based preconditioning of implicit methods for non-equilibrium radiation diffusion , 2003 .