Submersed free-space propagation of beams carrying orbital angular momentum

The implementation of spatial multiplexing has become an area of great interest for free-space communication links, particularly for its use in last-mile links within larger optical networks. Light carrying orbital angular momentum (OAM) has emerged as a potential candidate that could be utilised for multiplexing independent channels. We will present measured inter-channel crosstalk for a set of 11-OAM modes propagating through 3m of slowly flowing water, similar to that found in oceanic flow conditions

[1]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[2]  A. Willner,et al.  Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing. , 2013, Optics letters.

[3]  Mingming Tan,et al.  Visible light communications using a directly modulated 422 nm GaN laser diode. , 2013, Optics letters.

[4]  A. Willner,et al.  Crosstalk mitigation in a free-space orbital angular momentum multiplexed communication link using 4×4 MIMO equalization. , 2014, Optics letters.

[5]  Yongxiong Ren,et al.  Demonstration of a 280  Gbit/s free-space space-division-multiplexing communications link utilizing plane-wave spatial multiplexing. , 2016, Optics letters.

[6]  Andrei Faraon,et al.  Orbital Angular Momentum-based Space Division Multiplexing for High-capacity Underwater Optical Communications , 2016, Scientific Reports.

[7]  Miles J. Padgett,et al.  The Poynting vector in Laguerre-Gaussian laser modes , 1995 .

[8]  C. Paterson,et al.  Atmospheric turbulence and orbital angular momentum of single photons for optical communication. , 2005, Physical review letters.

[9]  A. Willner,et al.  Terabit free-space data transmission employing orbital angular momentum multiplexing , 2012, Nature Photonics.

[10]  Andrew G. White,et al.  Generation of optical phase singularities by computer-generated holograms. , 1992, Optics letters.

[11]  M. Padgett,et al.  Orbital angular momentum: origins, behavior and applications , 2011 .

[12]  A. Willner,et al.  Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers , 2013, Science.

[13]  S. Barnett,et al.  Free-space information transfer using light beams carrying orbital angular momentum. , 2004, Optics express.

[14]  A. Willner,et al.  High-capacity millimetre-wave communications with orbital angular momentum multiplexing , 2014, Nature Communications.

[15]  L. Nelson,et al.  Space-division multiplexing in optical fibres , 2013, Nature Photonics.

[16]  Robert W Boyd,et al.  Influence of atmospheric turbulence on states of light carrying orbital angular momentum. , 2012, Optics letters.

[17]  F. Hanson,et al.  High bandwidth underwater optical communication. , 2008, Applied optics.

[18]  Johannes Courtial,et al.  Measurement of the light orbital angular momentum spectrum using an optical geometric transformation , 2011 .

[19]  David L. Fried,et al.  Statistics of a Geometric Representation of Wavefront Distortion: Errata , 1965 .

[20]  A. Willner,et al.  100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength. , 2014, Optics letters.

[21]  Johannes Courtial,et al.  Refractive elements for the measurement of the orbital angular momentum of a single photon. , 2012, Optics express.

[22]  R. Boyd,et al.  Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum. , 2009, Optics letters.

[23]  J. Beckers ADAPTIVE OPTICS FOR ASTRONOMY: Principles, Performance, and Applications , 1993 .