Inverse stochastic–dynamic models for high-resolution Greenland ice core records

Abstract. Proxy records from Greenland ice cores have been studied for several decades, yet many open questions remain regarding the climate variability encoded therein. Here, we use a Bayesian framework for inferring inverse, stochastic–dynamic models from δ18O and dust records of unprecedented, subdecadal temporal resolution. The records stem from the North Greenland Ice Core Project (NGRIP), and we focus on the time interval 59–22 ka b2k. Our model reproduces the dynamical characteristics of both the δ18O and dust proxy records, including the millennial-scale Dansgaard–Oeschger variability, as well as statistical properties such as probability density functions, waiting times and power spectra, with no need for any external forcing. The crucial ingredients for capturing these properties are (i) high-resolution training data, (ii) cubic drift terms, (iii) nonlinear coupling terms between the δ18O and dust time series, and (iv) non-Markovian contributions that represent short-term memory effects.

[1]  M. Rypdal Early-Warning Signals for the Onsets of Greenland Interstadials and the Younger Dryas–Preboreal Transition , 2015, 1512.07381.

[2]  M. Crucifix,et al.  Influence of external forcings on abrupt millennial-scale climate changes: a statistical modelling study , 2015, Climate Dynamics.

[3]  G. Pavliotis,et al.  Data-driven coarse graining in action: Modeling and prediction of complex systems. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  M. Ghil,et al.  Low-Dimensional Galerkin Approximations of Nonlinear Delay Differential Equations , 2015, 1509.02945.

[5]  M. Ghil,et al.  A collection on ‘Climate dynamics: multiple scales and memory effects’ , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[6]  Alexandre J. Chorin,et al.  Discrete approach to stochastic parametrization and dimension reduction in nonlinear dynamics , 2015, Proceedings of the National Academy of Sciences.

[7]  Michael Ghil,et al.  Data-driven non-Markovian closure models , 2014, 1411.4700.

[8]  Gareth O. Roberts,et al.  Systematic physics constrained parameter estimation of stochastic differential equations , 2013, Comput. Stat. Data Anal..

[9]  H. Fischer,et al.  A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy , 2014 .

[10]  B. Vinther,et al.  Water isotope diffusion rates from the NorthGRIP ice core for the last 16,000 years - Glaciological and paleoclimatic implications , 2014, 1404.4201.

[11]  M. Ghil,et al.  Low‐order stochastic model and “past‐noise forecasting” of the Madden‐Julian Oscillation , 2013 .

[12]  Frank Kwasniok,et al.  Analysis and modelling of glacial climate transitions using simple dynamical systems , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[13]  A. Barnston,et al.  Skill of Real-Time Seasonal ENSO Model Predictions During 2002–11: Is Our Capability Increasing? , 2012 .

[14]  Sebastian Wieczorek,et al.  Is the astronomical forcing a reliable and unique pacemaker for climate? A conceptual model study , 2011, Climate Dynamics.

[15]  Michael Ghil,et al.  Predicting stochastic systems by noise sampling, and application to the El Niño-Southern Oscillation , 2011, Proceedings of the National Academy of Sciences.

[16]  Michel Crucifix,et al.  On the use of simple dynamical systems for climate predictions , 2009, 0906.3625.

[17]  O. Ditlevsen,et al.  On the Stochastic Nature of the Rapid Climate Shifts during the Last Ice Age , 2009 .

[18]  Marie-Louise Siggaard-Andersen,et al.  High-Resolution Greenland Ice Core Data Show Abrupt Climate Change Happens in Few Years , 2008, Science.

[19]  R. Röthlisberger,et al.  Abrupt Climate Change Happens in Few Years High-Resolution Greenland Ice Core Data , 2008 .

[20]  S. Kravtsov 2 Empirical model reduction and the modelling hierarchy in climate dynamics and the geosciences , 2009 .

[21]  Dorthe Dahl-Jensen,et al.  A 60 000 year Greenland stratigraphic ice core chronology , 2007 .

[22]  R. Röthlisberger,et al.  Glacial/interglacial changes in mineral dust and sea‐salt records in polar ice cores: Sources, transport, and deposition , 2007 .

[23]  Katrine K Andersen,et al.  The DO-climate events are probably noise induced: statistical investigation of the claimed 1470 years cycle , 2006 .

[24]  Marie-Louise Siggaard-Andersen,et al.  The Greenland Ice Core Chronology 2005, 15-42 ka. Part 1: constructing the time scale , 2006 .

[25]  Carl Wunsch,et al.  Consequences of pacing the Pleistocene 100 kyr ice ages by nonlinear phase locking to Milankovitch forcing , 2006 .

[26]  Michael Ghil,et al.  Empirical mode reduction in a model of extratropical low-frequency variability , 2006 .

[27]  A. Chorin,et al.  Stochastic Tools in Mathematics and Science , 2005 .

[28]  Michael Ghil,et al.  A Hierarchy of Data-Based ENSO Models , 2005 .

[29]  Michael Ghil,et al.  Multilevel Regression Modeling of Nonlinear Processes: Derivation and Applications to Climatic Variability , 2005 .

[30]  P. Ditlevsen,et al.  The Recurrence Time of Dansgaard–Oeschger Events and Limits on the Possible Periodic Component , 2005, nlin/0505031.

[31]  J Schwander,et al.  High-resolution record of Northern Hemisphere climate extending into the last interglacial period , 2004, Nature.

[32]  J. Rial Abrupt climate change: chaos and order at orbital and millennial scales , 2004 .

[33]  S. Jørgensen Model Selection and Multimodel Inference: A Practical Information—Theoretic Approach, Second Edition, Kenneth P. Brunham, David R. Anderson, Springer-Verlag, Heidelberg, 2002, 490 pages, hardbound, 31 illustrations , 2004 .

[34]  Yuhong Yang Can the Strengths of AIC and BIC Be Shared , 2005 .

[35]  J. Pelletier Coherence resonance and ice ages , 2003 .

[36]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[37]  J. Steffensen,et al.  Continuous record of microparticle concentration and size distribution in the central Greenland NGRIP ice core during the last glacial period , 2003 .

[38]  Alexandre J. Chorin,et al.  Optimal prediction with memory , 2002 .

[39]  Michael Ghil,et al.  ADVANCED SPECTRAL METHODS FOR CLIMATIC TIME SERIES , 2002 .

[40]  R. Röthlisberger,et al.  High-resolution microparticle profiles at NorthGRIP, Greenland: case studies of the calcium–dust relationship , 2002, Annals of Glaciology.

[41]  Andrew J. Majda,et al.  A mathematical framework for stochastic climate models , 2001 .

[42]  Dorthe Dahl-Jensen,et al.  Oxygen isotope and palaeotemperature records from six Greenland ice‐core stations: Camp Century, Dye‐3, GRIP, GISP2, Renland and NorthGRIP , 2001 .

[43]  W. Berger The 100-kyr ice-age cycle: internal oscillation or inclinational forcing? , 1999 .

[44]  P. Ditlevsen,et al.  Observation of α‐stable noise induced millennial climate changes from an ice‐core record , 1999 .

[45]  Uffe Andersen,et al.  The δ18O record along the Greenland Ice Core Project deep ice core and the problem of possible Eemian climatic instability , 1997 .

[46]  Prashant D. Sardeshmukh,et al.  The Optimal Growth of Tropical Sea Surface Temperature Anomalies , 1995 .

[47]  Michael Ghil,et al.  Cryothermodynamics: the chaotic dynamics of paleoclimate , 1994 .

[48]  J. Jouzel,et al.  Evidence for general instability of past climate from a 250-kyr ice-core record , 1993, Nature.

[49]  J. Jouzel,et al.  Irregular glacial interstadials recorded in a new Greenland ice core , 1992, Nature.

[50]  R. Vautard,et al.  Singular-spectrum analysis: a toolkit for short, noisy chaotic signals , 1992 .

[51]  Michael Ghil,et al.  Adaptive filtering and maximum entropy spectra with application to changes in atmospheric angular momentum , 1991 .

[52]  Barry Saltzman,et al.  A first-order global model of late Cenozoic climatic change II. Further analysis based on a simplification of CO2 dynamics , 1991, Transactions of the Royal Society of Edinburgh: Earth Sciences.

[53]  Michael Ghil,et al.  Orbital forcing, climatic interactions, and glaciation cycles , 1983 .

[54]  M. Ghil,et al.  Internal variability of an energy-balance model with delayed albedo effects , 1982 .

[55]  Michael Ghil,et al.  Free oscillations in a climate model with ice-sheet dynamics , 1979 .

[56]  K. Hasselmann Stochastic climate models Part I. Theory , 1976 .

[57]  E. B. Andersen,et al.  Asymptotic Properties of Conditional Maximum‐Likelihood Estimators , 1970 .

[58]  J. Srivastava A multivariate extension of the gauss-markov theorem , 1965 .

[59]  H. Mori A Continued-Fraction Representation of the Time-Correlation Functions , 1965 .

[60]  Robert Zwanzig,et al.  On the identity of three generalized master equations , 1964 .