Crystallographic studies of fully dehydrated partially Zn2+-exchanged zeolite Y (FAU, Si/Al = 1.56) depending on Zn2+ concentration of aqueous solution during exchange

[1]  S. Seo,et al.  Synthesis and structural refinement of fully dehydrated fully Zn2+-exchanged zeolite Y (FAU), |Zn35.5|[Si121Al71O384]-FAU , 2011 .

[2]  G. Lu,et al.  Single-crystal structures of highly NH4+-exchanged, fully deaminated, and fully Tl+-exchanged zeolite Y (FAU, Si/Al = 1.56), all fully dehydrated , 2010 .

[3]  Somchai Osuwan,et al.  Conversion of Methylesters to Hydrocarbons Over Zn-Modified H-ZSM-5 Zeolite Catalyst , 2009 .

[4]  I. Ahmed,et al.  Coordination of Cd2+ ions in the internal pore system of Zeolite-X : a combined EXAFS and isotopic exchange study. , 2009 .

[5]  Wladek Minor,et al.  HKL-3000: the integration of data reduction and structure solution--from diffraction images to an initial model in minutes. , 2006, Acta crystallographica. Section D, Biological crystallography.

[6]  K. Seff,et al.  Structure of Dehydrated Zn2+-Exchanged Zeolite X. Overexchange, Framework Dealumination and Reorganization, Stoichiometric Retention of Monomeric Tetrahedral Aluminate , 1999 .

[7]  D. Barthomeuf,et al.  Basic zeolites : Characterization and uses in adsorption and catalysis , 1996 .

[8]  Narendra Kumar,et al.  Synthesis and characterization of H-ZSM-22, Zn-H-ZSM-22 and Ga-H-ZSM-22 zeolite catalysts and their catalytic activity in the aromatization of n-butane , 1996 .

[9]  Clive J. Blower,et al.  The gas-phase decomposition of nitromethane over metal ion-exchanged sodium Y zeolite and sodium X zeolite , 1993 .

[10]  M. Ziolek,et al.  Reactions of alcohols with hydrogen sulfide over zeolites: Part V. The role of Brönsted acid sites in thiols formation — A comparative study of zeolites and heteropoly acids , 1992 .

[11]  C. S. Brooks Desulfurization Over Metal Zeolites , 1990 .

[12]  A. K. Manovyan,et al.  Aromatization of gasoline on zinc-modified zeolite-containing catalysts , 1989 .

[13]  K. Minachev,et al.  The Properties and Use in Catalysis of Zeolites of the Pentasil Type , 1983 .

[14]  F. R. Brown,et al.  Infrared studies on the acidity of metal impregnated ZSM-5 , 1983 .

[15]  P. Turner,et al.  Relativistic Hartree–Fock X‐ray and electron scattering factors , 1968 .

[16]  Walter Loewenstein,et al.  The distribution of aluminum in the tetrahedra of silicates and aluminates , 1954 .

[17]  Yang Kim,et al.  Two Crystal Structures of Dehydrated $Zn^{2+}$-Exchanged Zeolite X:$Zn_{46}Si_{100}Al_{92}O_{384}$ · 8 ZnO and $Zn_{13}Tl_{66}Si_{100}Al_{92}O_{384}$ · 2 ZnO , 2000 .

[18]  Donald W Breck,et al.  Zeolite Molecular Sieves: Structure, Chemistry, and Use , 1974 .

[19]  P. Jacobs,et al.  Redox behavior of transition metal ions in zeolites. I. Reversibility of the hydrogen reduction of copper Y zeolites , 1975 .

[20]  D. Cromer ANOMALOUS DISPERSION CORRECTIONS COMPUTED FROM SELF-CONSISTENT FIELD RELATIVISTIC DIRAC-SLATER WAVE FUNCTIONS , 1965 .

[21]  G. D. Rieck,et al.  International tables for X-ray crystallography , 1962 .