No Quadrangulation is Extremely Odd

Given a set S of n points in the plane, a quadrangulation of S is a planar subdivision whose vertices are the points of S, whose outer face is the convex hull of S, and every face of the subdivision (except possibly the outer face) is a quadrilateral. We show that S admits a quadrangulation if and only if S does not have an odd number of extreme points. If S admits a quadrangulation, we present an algorithm that computes a quadrangulation of S in O(n log n) time even in the presence of collinear points. If S does not admit a quadrangulation, then our algorithm can quadrangulate S with the addition of one extra point, which is optimal. We also provide an \Omega(n \log n) time lower bound for the problem. Finally, our results imply that a k-angulation of a set of points can be achieved with the addition of at most k-3 extra points within the same time bound.

[1]  Bernard Chazelle,et al.  On the convex layers of a planar set , 1985, IEEE Trans. Inf. Theory.

[2]  J. Kahn,et al.  Traditional Galleries Require Fewer Watchmen , 1983 .

[3]  Kurt Mehlhorn,et al.  Dynamic point location in general subdivisions , 1992, SODA '92.

[4]  C. Board,et al.  Display and analysis of spatial data , 1975 .

[5]  Anna Lubiw,et al.  Decomposing polygonal regions into convex quadrilaterals , 1985, SCG '85.

[6]  Takao Asano,et al.  Partitioning a polygonal region into trapezoids , 1986, JACM.

[7]  Tianjun Wang,et al.  A C2-quintic spline interpolation scheme on triangulation , 1992, Comput. Aided Geom. Des..

[8]  Steven Skiena,et al.  Hamilton Triangulations for Fast Rendering , 1994, ESA.

[9]  Subhash Suri,et al.  Applications of a semi-dynamic convex hull algorithm , 1990, BIT.

[10]  Qiu Pei‐yong,et al.  Electron beam exposure system , 1979 .

[11]  Godfried T. Toussaint,et al.  NEW RESULTS IN COMPUTATIONAL GEOMETRY RELEVANT TO PATTERN RECOGNITION IN PRACTICE , 1986 .

[12]  E. Heighway A mesh generator for automatically subdividing irregular polygons into quadrilaterals , 1983 .

[13]  John M. Sullivan,et al.  Automatic conversion of triangular finite element meshes to quadrilateral elements , 1991 .

[14]  Alain Fournier,et al.  Triangulating Simple Polygons and Equivalent Problems , 1984, TOGS.

[15]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[16]  J. Sack,et al.  Minimum Decompositions of Polygonal Objects , 1985 .

[17]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[18]  G. Toussaint Solving geometric problems with the rotating calipers , 1983 .

[19]  Yuan-Fang Wang,et al.  Surface reconstruction and representation of 3-D scenes , 1986, Pattern Recognit..

[20]  K. Wagner Bemerkungen zum Vierfarbenproblem. , 1936 .

[21]  Micha Sharir,et al.  Piecewise-linear interpolation between polygonal slices , 1994, SCG '94.

[22]  Roberto Tamassia,et al.  Fully Dynamic Point Location in a Monotone Subdivision , 1989, SIAM J. Comput..

[23]  Elwood S. Buffa,et al.  Graph Theory with Applications , 1977 .

[24]  N. Sugiyama,et al.  Electron-beam exposure system AMDES , 1979 .

[25]  M. Shephard,et al.  Geometry-based fully automatic mesh generation and the delaunay triangulation , 1988 .

[26]  Godfried T. Toussaint,et al.  Guard Placement in Rectilinear Polygons , 1988 .

[27]  Joseph O'Rourke,et al.  Computational Geometry in C. , 1995 .