Classification of Geophysical Basins Derived From SRTM and Cartosat DEMs via Directional Granulometries

Spatial patterns from terrestrial surfaces have great potential to better understand the surficial phenomena and processes. This article provides an approach for classification of the hierarchically partitioned basins, subbasins, and watersheds with respect to high-directional granulometric index, low-directional granulometric index, and global granulometric index. Grayscale global and directional granulometric indexes of basin and corresponding watersheds derived from Shuttle Radar Topographic Mission (SRTM) and Cartosat digital elevation models (DEMs) of the Lower Indus subbasin of peninsular India are computed. The end results shown are in the forms of watersheds categorized and classified according to global and high- and low-directional grayscale granulometric indexes. It is interesting to observe that the classification of watersheds derived from SRTM and Cartosat DEMs, respectively, yielded similar results, suggesting it would be worthwhile to explore the potential relationships between the directional granulometric indexes of the watersheds and their resistance to perturbations caused by endogenic and exogenic forces. It is also observed that the orientation of watersheds and the general flow direction within those watersheds are in the direction in which the watersheds yield high-directional granulometric index.

[1]  G. Miliaresis,et al.  Segmentation of physiographic features from the global digital elevation model/GTOPO30 , 1999 .

[2]  B. S. Daya Sagar Visualization of Spatiotemporal Behavior of Discrete Maps via Generation of Recursive Median Elements , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  B. S. Daya Sagar,et al.  Metric Based on Morphological Dilation for the Detection of Spatially Significant Zones , 2013, IEEE Geoscience and Remote Sensing Letters.

[4]  Joseph Naor,et al.  Multiple Resolution Texture Analysis and Classification , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Hugues Talbot,et al.  Directional Morphological Filtering , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Jocelyn Chanussot,et al.  Soft-Then-Hard Super-Resolution Mapping Based on Pansharpening Technique for Remote Sensing Image , 2019, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[7]  L. Band Topographic Partition of Watersheds with Digital Elevation Models , 1986 .

[8]  Jon Atli Benediktsson,et al.  Classification and feature extraction for remote sensing images from urban areas based on morphological transformations , 2003, IEEE Trans. Geosci. Remote. Sens..

[9]  Jon Atli Benediktsson,et al.  An Unsupervised Technique Based on Morphological Filters for Change Detection in Very High Resolution Images , 2008, IEEE Geoscience and Remote Sensing Letters.

[10]  C. A. Rishikeshan,et al.  An automated mathematical morphology driven algorithm for water body extraction from remotely sensed images , 2018, ISPRS Journal of Photogrammetry and Remote Sensing.

[11]  Cris L. Luengo Hendriks,et al.  Using Line Segments as Structuring Elements for Sampling-Invariant Measurements , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  G. Matheron Random Sets and Integral Geometry , 1976 .

[13]  Luc Vincent,et al.  Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Pierre Soille,et al.  Recursive Implementation of Erosions and Dilations Along Discrete Lines at Arbitrary Angles , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  J. Dozier,et al.  Automated basin delineation from digital elevation data , 1984 .

[16]  G. Miliaresis,et al.  Quantitative representation of mountain objects extracted from the global digital elevation model (GTOPO30) , 2002 .

[17]  P. Soille,et al.  Automated basin delineation from digital elevation models using mathematical morphology , 1990 .

[18]  Mauro Dalla Mura Advanced Techniques based on Mathematical Morphology for the Analysis of Remote Sensing Images , 2011 .

[19]  Jon Atli Benediktsson,et al.  Morphological Attribute Profiles for the Analysis of Very High Resolution Images , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[20]  D. Tarboton A new method for the determination of flow directions and upslope areas in grid digital elevation models , 1997 .

[21]  B. S. Daya Sagar,et al.  Generation of Zonal Map From Point Data via Weighted Skeletonization by Influence Zone , 2012, IEEE Geoscience and Remote Sensing Letters.

[22]  A. Woronow,et al.  Morphometric consistency with the Hausdorff-Besicovich dimension , 1981 .

[23]  K. Clarke,et al.  Exploring the fractal mountains , 1992 .

[24]  B. Mandelbrot,et al.  Fractal character of fracture surfaces of metals , 1984, Nature.

[25]  Pedro Pina,et al.  A morphological approach for feature space partitioning , 2006, IEEE Geoscience and Remote Sensing Letters.

[26]  B. S. Daya Sagar,et al.  Please Scroll down for Article International Journal of Remote Sensing Spatial Information Retrieval, Analysis, Reasoning and Modelling , 2022 .

[27]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[28]  Colin P. Stark,et al.  Application of a multi‐temporal, LiDAR‐derived, digital terrain model in a landslide‐volume estimation , 2013 .

[29]  Anthony M. Castronova,et al.  Enabling Collaborative Numerical Modeling in Earth Sciences using Knowledge Infrastructure , 2019, Environ. Model. Softw..

[30]  B. S. Daya Sagar,et al.  Morphing of Grayscale DEMs via Morphological Interpolations , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[31]  David G. Tarboton,et al.  On the extraction of channel networks from digital elevation data , 1991 .

[32]  Jon Atli Benediktsson,et al.  Classification of Hyperspectral Images by Using Extended Morphological Attribute Profiles and Independent Component Analysis , 2011, IEEE Geoscience and Remote Sensing Letters.

[33]  Johannes R. Sveinsson,et al.  Classification of hyperspectral data from urban areas based on extended morphological profiles , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[34]  B. Mandelbrot Stochastic models for the Earth's relief, the shape and the fractal dimension of the coastlines, and the number-area rule for islands. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Francesca Bovolo,et al.  A Review of Change Detection in Multitemporal Hyperspectral Images: Current Techniques, Applications, and Challenges , 2019, IEEE Geoscience and Remote Sensing Magazine.

[36]  B. S. Daya Sagar,et al.  Granulometric analyses of basin‐wise DEMs: a comparative study , 2007 .

[37]  Filippo Catani,et al.  Statistical analysis of drainage density from digital terrain data , 2001 .

[38]  Liangpei Zhang,et al.  Evaluation of Morphological Texture Features for Mangrove Forest Mapping and Species Discrimination Using Multispectral IKONOS Imagery , 2009, IEEE Geoscience and Remote Sensing Letters.

[39]  Hean-Teik Chuah,et al.  Analysis of geophysical networks derived from multiscale digital elevation models: a morphological approach , 2005, IEEE Geoscience and Remote Sensing Letters.

[40]  Igor V. Florinsky,et al.  Derivation of Topographic Variables from a Digital Elevation Model Given by a Spheriodal Trapezoidal Grid , 1998, Int. J. Geogr. Inf. Sci..

[41]  B. S. Daya Sagar Cartograms via mathematical morphology , 2014, Inf. Vis..

[42]  B. S. Daya Sagar,et al.  Morphological operators to extract channel networks from digital elevation models , 2000 .

[43]  M. Goodchild,et al.  The Fractal Nature of Geographic Phenomena , 1987 .

[44]  B. S. Daya Sagar,et al.  Ranks for Pairs of Spatial Fields via Metric Based on Grayscale Morphological Distances , 2015, IEEE Transactions on Image Processing.

[45]  Alex Pentland,et al.  Fractal-Based Description of Natural Scenes , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  John F. O'Callaghan,et al.  The extraction of drainage networks from digital elevation data , 1984, Comput. Vis. Graph. Image Process..

[47]  P. Burrough Fractal dimensions of landscapes and other environmental data , 1981, Nature.

[48]  M. Goodchild,et al.  The fractal properties of topography: A comparison of methods , 1992 .

[49]  H. Mitásová,et al.  Scientific visualization of landscapes and landforms , 2012 .

[50]  Jon Atli Benediktsson,et al.  Classification of Remote Sensing Optical and LiDAR Data Using Extended Attribute Profiles , 2012, IEEE Journal of Selected Topics in Signal Processing.

[51]  Petros Maragos,et al.  Pattern Spectrum and Multiscale Shape Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[52]  B. S. Daya Sagar,et al.  FRACTAL-SKELETAL BASED CHANNEL NETWORK (F-SCN) IN A TRIANGULAR INITIATOR-BASIN , 2001 .

[53]  B. S. Daya Sagar,et al.  Variable-Specific Classification of Zones, Pairs of Zones, and Clusters of a Spatial System via Modified Gravity Model , 2019, IEEE Transactions on Emerging Topics in Computing.

[54]  D. Sathymoorthy,et al.  Morphological segmentation of physiographic features from DEM , 2007 .

[55]  B. Sagar,et al.  Mathematical Morphology in Geomorphology and GISci , 2013 .

[56]  Nigel Dodd,et al.  Multispectral Texture Synthesis Using Fractal Concepts , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[57]  B. S. Daya Sagar,et al.  Automatic Detection of Orientation of Mapped Units via Directional Granulometric Analysis , 2013, IEEE Geoscience and Remote Sensing Letters.