Single-bit feedback and quantum-dynamical decoupling

Synthesizing an effective identity evolution in a target system subjected to unwanted unitary or nonunitary dynamics is a fundamental task for both quantum control and quantum information processing applications. Here, we investigate how single-bit, discrete-time feedback capabilities may be exploited to enact or to enhance quantum procedures for effectively suppressing unwanted dynamics in a finite-dimensional open quantum system. An explicit characterization of the joint unitary propagators correctable by a single-bit feedback strategy for arbitrary evolution time is obtained. For a two-dimensional target system, we show how by appropriately combining quantum feedback with dynamical decoupling methods, concatenated feedback-decoupling schemes may be built, which can operate under relaxed control assumptions and can outperform purely closed-loop and open-loop protocols.

[1]  Howard E. Brandt,et al.  Quantum computation and information : AMS Special Session Quantum Computation and Information, January 19-21, 2000, Washington, D.C. , 2002 .

[2]  R. F. Werner,et al.  Quantum lost and found , 2002, quant-ph/0209025.

[3]  W. Magnus On the exponential solution of differential equations for a linear operator , 1954 .

[4]  D A Lidar,et al.  Creating decoherence-free subspaces using strong and fast pulses. , 2002, Physical review letters.

[5]  Lorenza Viola,et al.  Engineering quantum dynamics , 2001 .

[6]  Daniel A. Lidar,et al.  Overview of quantum error prevention and leakage elimination , 2004, quant-ph/0402098.

[7]  Augusto Ferrante,et al.  Dynamical decoupling in quantum control: A system theoretic approach , 2006, Syst. Control. Lett..

[8]  Hideo Mabuchi,et al.  Real-Time Quantum Feedback Control of Atomic Spin-Squeezing , 2004, Science.

[9]  R. Romano,et al.  Incoherent control and entanglement for two-dimensional coupled systems (8 pages) , 2006 .

[10]  E. Knill,et al.  Realization of quantum error correction , 2004, Nature.

[11]  Bruce A. Francis,et al.  Feedback Control Theory , 1992 .

[12]  Viola,et al.  Theory of quantum error correction for general noise , 2000, Physical review letters.

[13]  Haeberlen Ulrich,et al.  High resolution NMR in solids : selective averaging , 1976 .

[14]  Nicolas Boulant,et al.  Experimental Concatenation of Quantum Error Correction with Decoupling , 2002, Quantum Inf. Process..

[15]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[16]  A. Harrow,et al.  Quantum dynamics as a physical resource , 2002, quant-ph/0208077.

[17]  Wiseman,et al.  Quantum theory of continuous feedback. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[18]  R. F. Werner,et al.  On quantum error-correction by classical feedback in discrete time , 2004 .

[19]  Seth Lloyd,et al.  Universal quantum interfaces , 2004 .

[20]  Lorenza Viola,et al.  Dynamical suppression of 1/f noise processes in qubit systems. , 2004, Physical review letters.

[21]  Lorenza Viola,et al.  Implementation of universal control on a decoherence-free qubit , 2002 .

[22]  Quantum measurement of a mesoscopic spin ensemble , 2005, quant-ph/0508144.

[23]  L. Deslauriers,et al.  Sympathetic cooling of trapped Cd + isotopes , 2002 .

[24]  Schumacher,et al.  Sending entanglement through noisy quantum channels. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[25]  Lorenza Viola Quantum control via encoded dynamical decoupling , 2002 .

[26]  S. Lloyd,et al.  Coherent quantum feedback , 2000 .

[27]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .

[28]  Electron spin relaxation by nuclei in semiconductor quantum dots , 2002, cond-mat/0202271.

[29]  Ray Freeman,et al.  Spin Choreography: Basic Steps in High Resolution NMR , 1996 .

[30]  D. Lidar,et al.  Fault-tolerant quantum dynamical decoupling , 2004, 2005 Quantum Electronics and Laser Science Conference.

[31]  Daniel A Lidar,et al.  Comprehensive encoding and decoupling solution to problems of decoherence and design in solid-state quantum computing. , 2002, Physical review letters.

[32]  L. Orozco,et al.  Quantum feedback in a non-resonant cavity QED system , 2004 .

[33]  Milburn,et al.  Quantum theory of optical feedback via homodyne detection. , 1993, Physical review letters.

[34]  P. Zanardi Symmetrizing Evolutions , 1998, quant-ph/9809064.

[35]  G. J. Milburn,et al.  Quantum error correction for continuously detected errors , 2003 .

[36]  A. J. Short,et al.  Fidelity of single qubit maps , 2002 .

[37]  P. Facchi,et al.  Three Different Manifestations of the Quantum Zeno Effect , 2003 .

[38]  E. Knill,et al.  DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.

[39]  A. Mandilara,et al.  Probabilistic quantum control via indirect measurement , 2005 .