Independent Sets from an Algebraic Perspective

In this paper, we study the basic problem of counting independent sets in a graph and, in particular, the problem of counting antichains in a finite poset, from an algebraic perspective. We show that neither independence polynomials of bipartite Cohen-Macaulay graphs nor Hilbert series of initial ideals of radical zero-dimensional complete intersections ideals, can be evaluated in polynomial time, unless #P=P. Moreover, we present a family of radical zero-dimensional complete intersection ideals J_P associated to a finite poset P, for which we describe a universal Gr\"obner basis. This implies that the bottleneck in computing the dimension of the quotient by J_P (that is, the number of zeros of J_P) using Gr\"obner methods lies in the description of the standard monomials.

[1]  Rafael H. Villarreal,et al.  On the Ideal Theory of Graphs , 1994 .

[2]  Takayuki Hibi,et al.  Distributive Lattices, Bipartite Graphs and Alexander Duality , 2003 .

[3]  David A. Cox,et al.  Using Algebraic Geometry , 1998 .

[4]  Adam B. Yedidia Counting Independent Sets and Kernels of Regular Graphs , 2009, ArXiv.

[5]  Jürgen Reinhold,et al.  The Number of Unlabeled Orders on Fourteen Elements , 2000, Order.

[6]  David Eppstein,et al.  All maximal independent sets and dynamic dominance for sparse graphs , 2004, TALG.

[7]  AMIR HASHEMI,et al.  Polynomial complexity for Hilbert series of Borel type ideals , 2007 .

[8]  J. Scott Provan,et al.  The Complexity of Counting Cuts and of Computing the Probability that a Graph is Connected , 1983, SIAM J. Comput..

[9]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[10]  Martin Kreuzer,et al.  Computational Commutative Algebra 1 , 2000 .

[11]  Michael Eugene Stillman,et al.  Computation of Hilbert Functions , 1992, J. Symb. Comput..

[12]  H. Michael Möller,et al.  The computation of the Hilbert function , 1983, EUROCAL.

[13]  Jason I. Brown,et al.  Independence polynomials of circulants with an application to music , 2009, Discret. Math..

[14]  Vadim E. Levit,et al.  The independence polynomial of a graph - a survey , 2005 .

[15]  László Lovász,et al.  Stable sets and polynomials , 1994, Discret. Math..

[16]  Devavrat Shah,et al.  Counting Independent Sets Using the Bethe Approximation , 2011, SIAM J. Discret. Math..

[17]  Jason I. Brown,et al.  On the Location of Roots of Independence Polynomials , 2004 .

[18]  Alicia Dickenstein,et al.  Counting solutions to binomial complete intersections , 2005, J. Complex..

[19]  J. Okninski,et al.  On monomial algebras , 1988, Semigroup Algebras.

[20]  Christopher A. Francisco,et al.  EdgeIdeals: a package for (hyper)graphs , 2009 .