Modelling, characterisation and uncertainties of stabilised pseudoelastic shape memory alloy helical springs

The thermo-mechanical behaviour of pseudoelastic shape memory alloy helical springs is of concern discussing stabilised and cyclic responses. Constitutive description of the shape memory alloy is based on the framework developed by Lagoudas and co-workers incorporating two modifications related to hardening and sub-loop functions designated by Bézier curves. The spring model takes into account both bending and torsion of the spring wire, thus representing geometrical non-linearities. Simplified models are explored showing that a single point in the wire cross section is enough to represent the global spring behaviour in spite of complex stress–strain distributions. The experiments are carried out considering different deflection amplitudes, frequencies and ambient temperatures, which influence the spring behaviour to different extents. The model is fitted against a calibration data set resulting in 1.3% residual standard deviation relative to the full range force. Compared to the validation data set, the errors are below 10% relative to the full range of the complex modulus. Uncertainty analysis of the model parameters using a Markov chain Monte Carlo technique shows low to high parameter correlation, and the relative uncertainties are less than ±12%. Both the heat capacity and the convection coefficient are clearly identifiable from the performed experiments.

[1]  Ralph C. Smith,et al.  Quantification of parameter uncertainty for robust control of shape memory alloy bending actuators , 2013 .

[2]  Manuel Collet,et al.  Shape Memory Alloys Cyclic Behavior: Experimental Study and Modeling , 2006 .

[3]  M. Elahinia,et al.  Constitutive modeling of tension-torsion coupling and tension-compression asymmetry in NiTi shape memory alloys , 2014 .

[4]  A. Chrysanthou,et al.  Martensitic-Austenitic phase transformation of Ni-Ti SMAs : Thermal properties , 2012 .

[5]  Ralph C. Smith,et al.  Quantification of parameter and model uncertainty for shape memory alloy bending actuators , 2014 .

[6]  Carlos José de Araújo,et al.  Study of the Complex Stiffness of a Vibratory Mechanical System with Shape Memory Alloy Coil Spring Actuator , 2014 .

[7]  Kyu-Jin Cho,et al.  Engineering design framework for a shape memory alloy coil spring actuator using a static two-state model , 2012 .

[8]  Vagner Candido de Sousa,et al.  Effect of pseudoelastic hysteresis of shape memory alloy springs on the aeroelastic behavior of a typical airfoil section , 2016 .

[9]  Eisenhawer de M. Fernandes,et al.  Rotor-bearing vibration control system based on fuzzy controller and smart actuators , 2013 .

[10]  L. Brinson One-Dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Derivation with Non-Constant Material Functions and Redefined Martensite Internal Variable , 1993 .

[11]  S. Padula,et al.  Large scale simulation of NiTi helical spring actuators under repeated thermomechanical cycles , 2013 .

[12]  Anne-Lise Gloanec,et al.  Deformation mechanisms in a TiNi shape memory alloy during cyclic loading , 2013 .

[13]  H. Yin,et al.  Ambient effect on damping peak of NiTi shape memory alloy , 2010 .

[14]  D. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part IV: modeling of minor hysteresis loops , 1999 .

[15]  K. K. Ang,et al.  Buckling enhancement of epoxy columns using embedded shape memory alloy spring actuators , 2006 .

[16]  Reginald DesRoches,et al.  A combined analytical, numerical, and experimental study of shape-memory-alloy helical springs , 2011 .

[17]  Dimitris C. Lagoudas,et al.  Design optimization and uncertainty analysis of SMA morphing structures , 2012 .

[18]  Q. Sun,et al.  Frequency-dependent temperature evolution in NiTi shape memory alloy under cyclic loading , 2010 .

[19]  David Corne,et al.  An adaptive metropolis-hasting sampling algorithm for reservoir uncertainty quantification in Bayesian inference , 2015, ANSS 2015.

[20]  Marcelo A. Savi,et al.  Nonlinear geometric influence on the mechanical behavior of shape memory alloy helical springs , 2015 .

[21]  L. G. Machado,et al.  Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys , 2012 .

[22]  J. Shaw,et al.  Thermomechanical aspects of NiTi , 1995 .

[23]  Ilmar F. Santos,et al.  Uncertainty Analysis of a One-Dimensional Constitutive Model for Shape Memory Alloy Thermomechanical Description , 2014 .

[24]  F. Gandhi,et al.  Characterization of the pseudoelastic damping behavior of shape memory alloy wires using complex modulus , 1999 .

[25]  Wael Zaki,et al.  Thermomechanical coupling in shape memory alloys under cyclic loadings: Experimental analysis and constitutive modeling , 2011 .

[26]  Marc Thomas,et al.  Damping behaviour of shape memory alloys : strain amplitude, frequency and temperature effects , 1998 .

[27]  Matteo Cianchetti,et al.  A general method for the design and fabrication of shape memory alloy active spring actuators , 2012 .

[28]  Ilmar F. Santos,et al.  Nonlinear dynamics of a pseudoelastic shape memory alloy system—theory and experiment , 2014 .

[29]  Marcelo A. Savi,et al.  Experimental and numerical investigations of shape memory alloy helical springs , 2010 .

[30]  M. Elahinia,et al.  Manufacturing and processing of NiTi implants: A review , 2012 .

[31]  Reginald DesRoches,et al.  Shape Memory Alloy Tension/Compression Device for Seismic Retrofit of Buildings , 2009, Journal of Materials Engineering and Performance.

[32]  Min Qi,et al.  The effect of ageing treatment on shape-setting and superelasticity of a nitinol stent , 2008 .

[33]  M. Kadkhodaei,et al.  Direct numerical determination of stabilized dissipated energy of shape memory alloys under cyclic tensile loadings , 2015 .

[34]  I. Santos,et al.  Quasi-static characterisation of trained pseudoelastic shape memory alloy wire subjected to cyclic loading: transformation kinetics , 2016 .

[35]  Jonathan Luntz,et al.  Transformation strain based method for characterization of convective heat transfer from shape memory alloy wires , 2010 .

[36]  Byungkyu Kim,et al.  An earthworm-like micro robot using shape memory alloy actuator , 2006 .

[37]  Ilmar F. Santos,et al.  Shape memory alloys applied to improve rotor-bearing system dynamics - an experimental investigation , 2015 .

[38]  Fabrizio Scarpa,et al.  A novel smart rotor support with shape memory alloy metal rubber for high temperatures and variable amplitude vibrations , 2014 .

[39]  Petr Salač,et al.  The cooling of the pressing device in the glass industry , 2013 .

[40]  Robert J. Wood,et al.  Design, fabrication and analysis of a body-caudal fin propulsion system for a microrobotic fish , 2008, 2008 IEEE International Conference on Robotics and Automation.

[41]  Farhan Gandhi,et al.  Experimental Investigation of the Pseudoelastic Hysteresis Damping Characteristics of Shape Memory Alloy Wires , 1998 .

[42]  Hisaaki Tobushi,et al.  Cyclic deformation of TiNi shape-memory alloy helical spring , 1992 .

[43]  C. A. Rogers,et al.  Design of Shape Memory Alloy Springs With Applications in Vibration Control , 1993 .