Controlled Coverage Using Time-Varying Density Functions

Abstract A new approach for controlling a system of multiple agents by choosing a time-varying density function is presented, employing optimal coverage ideas. In this approach, we specify a time-varying density function that represents where it is that want the agents to monitor, and how important it is for each point to be covered. A new algorithm is presented under which the agents track the time-varying density function while providing optimal coverage of the density function. Results from robot implementation show that the proposed algorithm guides the agents well over the chosen density functions, and that the effectiveness of the coverage is higher than other comparable algorithms.

[1]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[2]  Naomi Ehrich Leonard,et al.  Nonuniform Coverage and Cartograms , 2009, SIAM J. Control. Optim..

[3]  Chenglei Yang,et al.  On centroidal voronoi tessellation—energy smoothness and fast computation , 2009, TOGS.

[4]  David A. Forsyth,et al.  Generalizing motion edits with Gaussian processes , 2009, ACM Trans. Graph..

[5]  Francesco Bullo,et al.  Coordination and Geometric Optimization via Distributed Dynamical Systems , 2003, SIAM J. Control. Optim..

[6]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[7]  Mani B. Srivastava,et al.  Critical density thresholds for coverage in wireless sensor networks , 2003, 2003 IEEE Wireless Communications and Networking, 2003. WCNC 2003..

[8]  Kazuo Murota,et al.  A fast Voronoi-diagram algorithm with applications to geographical optimization problems , 1984 .

[9]  Miodrag Potkonjak,et al.  Exposure in wireless Ad-Hoc sensor networks , 2001, MobiCom '01.

[10]  Francesco Bullo,et al.  COVERAGE CONTROL FOR MOBILE SENSING NETWORKS: VARIATIONS ON A THEME , 2002 .

[11]  Sonia Martínez,et al.  Coverage control for mobile sensing networks , 2002, IEEE Transactions on Robotics and Automation.

[12]  Qiang Du,et al.  Convergence of the Lloyd Algorithm for Computing Centroidal Voronoi Tessellations , 2006, SIAM J. Numer. Anal..

[13]  Francesco Bullo,et al.  Esaim: Control, Optimisation and Calculus of Variations Spatially-distributed Coverage Optimization and Control with Limited-range Interactions , 2022 .

[14]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[15]  Qiang Du,et al.  Acceleration schemes for computing centroidal Voronoi tessellations , 2006, Numer. Linear Algebra Appl..