Nonlinear Perron-Frobenius Theory

In the past several decades the classical Perron–Frobenius theory for nonnegative matrices has been extended to obtain remarkably precise and beautiful results for classes of nonlinear maps. This nonlinear Perron–Frobenius theory has found significant uses in computer science, mathematical biology, game theory and the study of dynamical systems. This is the first comprehensive and unified introduction to nonlinear Perron–Frobenius theory suitable for graduate students and researchers entering the field for the first time. It acquaints the reader with recent developments and provides a guide to challenging open problems. To enhance accessibility, the focus is on finite dimensional nonlinear Perron–Frobenius theory, but pointers are provided to infinite dimensional results. Prerequisites are little more than basic real analysis and topology.

[1]  Ronald A. Howard,et al.  Dynamic Programming and Markov Processes , 1960 .

[2]  Simeon Reich,et al.  THE DENJOY-WOLFF THEOREM FOR CONDENSING HOLOMORPHIC MAPPINGS , 1999 .

[3]  Roger D. Nussbaum,et al.  Iterated linear maps on a cone and Denjoy–Wolff theorems , 2006 .

[4]  Anders Karlsson,et al.  Non-expanding maps and Busemann functions , 2001, Ergodic Theory and Dynamical Systems.

[5]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[6]  Bas Lemmens,et al.  Periods of order-preserving nonexpansive maps on strictly convex normed spaces , 2002 .

[7]  P. Bushell,et al.  On the Projective Contraction Ratio for Positive Linear Mappings , 1973 .

[8]  Stefan Straszewicz,et al.  Über exponierte Punkte abgeschlossener Punktmengen , 1935 .

[9]  Elon Kohlberg,et al.  Invariant Half-Lines of Nonexpansive Piecewise-Linear Transformations , 1980, Math. Oper. Res..

[10]  M. Kreĭn,et al.  Linear operators leaving invariant a cone in a Banach space , 1950 .

[11]  John Mallet-Paret,et al.  Generalizing the Krein–Rutman theorem, measures of noncompactness and the fixed point index , 2010 .

[12]  F. Bonsall,et al.  Linear Operators in Complete Positive Cones , 1958 .

[13]  L. Mirsky,et al.  The Theory of Matrices , 1961, The Mathematical Gazette.

[14]  H. Samelson On the Perron-Frobenius theorem. , 1957 .

[15]  R. Sine,et al.  A nonlinear Perron-Frobenius theorem , 1990 .

[16]  J. '. Paiva,et al.  Hilbert's fourth problem in two dimensions. , 2003 .

[17]  Bas Lemmens,et al.  Continuity of the cone spectral radius , 2011, 1107.4532.

[18]  Jean-Paul Chilès,et al.  Wiley Series in Probability and Statistics , 2012 .

[19]  Alex Samorodnitsky,et al.  A Deterministic Strongly Polynomial Algorithm for Matrix Scaling and Approximate Permanents , 2000, Comb..

[20]  Yorimasa Oshime,et al.  An extension of Morishima’s nonlinear Perron-Frobenius theorem , 1983 .

[21]  M. V. Menon Some spectral properties of an operator associated with a pair of nonnegative matrices , 1968 .

[22]  Richard Sinkhorn A Relationship Between Arbitrary Positive Matrices and Doubly Stochastic Matrices , 1964 .

[23]  A. M. Ostrowski,et al.  On positive matrices , 1963 .

[24]  Richard Sinkhorn,et al.  Concerning nonnegative matrices and doubly stochastic matrices , 1967 .

[25]  Shmuel Friedland,et al.  The Growth of Powers of a Nonnegative Matrix , 1980, SIAM J. Algebraic Discret. Methods.

[26]  M. Scheutzow,et al.  Periodic points of nonexpansive maps and nonlinear generalizations of the Perron-Frobenius theory , 1998 .

[27]  M. Fekete Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten , 1918 .

[28]  Michael Scheutzow,et al.  Periods of Nonexpansive Operators on Finite l1-Spaces , 1988, Eur. J. Comb..

[29]  F. F. Bonsall Sublinear Functionals and Ideals in Partially Ordered Vector Spaces , 1954 .

[30]  L. Shapley,et al.  Stochastic Games* , 1953, Proceedings of the National Academy of Sciences.

[31]  A. F. Beardon,et al.  Iteration of Contractions and Analytic Maps , 1990 .

[32]  O. Perron,et al.  Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus , 1907 .

[33]  R. Bapat D1AD2 theorems for multidimensional matrices , 1982 .

[34]  S. Fienberg An Iterative Procedure for Estimation in Contingency Tables , 1970 .

[35]  L. Collatz Einschließungssatz für die charakteristischen Zahlen von Matrizen , 1942 .

[36]  Jean Mairesse,et al.  Finite-range topical functions and uniformly topical functions , 2006 .

[37]  Jonathan M. Borwein,et al.  Entropy minimization, DAD problems, and doubly stochastic kernels , 1994 .

[38]  F. L. Bauer An elementary proof of the hopf inequality for positive operators , 1965 .

[39]  S. Janson,et al.  Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2011 .

[40]  Ulrich Krause,et al.  A limit set trichotomy for monotone nonlinear dynamical systems , 1992 .

[41]  D. Lubell A Short Proof of Sperner’s Lemma , 1966 .

[42]  Jeremy Gunawardena,et al.  From max-plus algebra to nonexpansive mappings: a nonlinear theory for discrete event systems , 2003, Theor. Comput. Sci..

[43]  A. Ostrowski,et al.  Positive Matrices and Functional Analysis , 1983 .

[44]  S. Gaubert,et al.  Spectral theorem for convex monotone homogeneous maps, and ergodic control , 2001, math/0110108.

[45]  H. H. Schaefer,et al.  Some spectral properties of positive linear operators , 1960 .

[46]  John Mallet-Paret,et al.  Eigenvalues for a class of homogeneous cone maps arising from max-plus operators , 2002 .

[47]  Peter E. Kloeden,et al.  A generalization of the Perron-Frobenius theorem , 2000 .

[48]  Roger D. Nussbaum,et al.  Omega limit sets of nonexpansive maps: finiteness and cardinality estimates , 1990, Differential and Integral Equations.

[49]  M. Gromov,et al.  Hyperbolic Manifolds, Groups and Actions , 1981 .

[50]  O. Perron Zur Theorie der Matrices , 1907 .

[51]  N. Aronszajn,et al.  EXTENSION OF UNIFORMLY CONTINUOUS TRANSFORMATIONS AND HYPERCONVEX METRIC SPACES , 1956 .

[52]  R. Nussbaum Convexity and log convexity for the spectral radius , 1986 .

[53]  Brian Lins,et al.  A Denjoy–Wolff theorem for Hilbert metric nonexpansive maps on polyhedral domains , 2007, Mathematical Proceedings of the Cambridge Philosophical Society.

[54]  P. Nowosad,et al.  On the integral equation κf = 1f arising in a problem in communication , 1966 .

[55]  M. Hirsch Stability and convergence in strongly monotone dynamical systems. , 1988 .

[56]  D. Hilbert Ueber die gerade Linie als kürzeste Verbindung zweier Punkte , 1895 .

[57]  E. Sperner Ein Satz über Untermengen einer endlichen Menge , 1928 .

[58]  Jonathan M. Borwein,et al.  The Arithmetic-Geometric Mean and Fast Computation of Elementary Functions , 1984 .

[59]  S. Gaubert,et al.  The Perron-Frobenius theorem for homogeneous, monotone functions , 2001, math/0105091.

[60]  Roger D. Nussbaum,et al.  Asymptotic estimates for the periods of periodic points of non-expansive maps , 2003, Ergodic Theory and Dynamical Systems.

[61]  Jonathan M. Borwein,et al.  Decomposition of Multivariate Functions , 1992, Canadian Journal of Mathematics.

[62]  Helmut H. Schaefer,et al.  Positive Transformationen in lokalkonvexen halbgeordneten Vektorräumen , 1955 .

[63]  B. C. Carlson Algorithms Involving Arithmetic and Geometric Means , 1971 .

[64]  A. Całka,et al.  On conditions under which isometries have bounded orbits , 1984 .

[65]  P. Bushell,et al.  The Cayley-Hilbert metric and positive operators , 1986 .

[66]  R. Nussbaum Iterated nonlinear maps and Hilbert’s projective metric. II , 1989 .

[67]  P. Bushell,et al.  On solutions of the matrix equation T'AT = A2 , 1974 .

[68]  Roger D. Nussbaum,et al.  Finsler structures for the part metric and Hilbert's projective metric and applications to ordinary differential equations , 1994, Differential and Integral Equations.

[69]  Koichiro Yamamoto Logarithmic order of free distributive lattice , 1954 .

[70]  Roger D. Nussbaum,et al.  Convergence of iterates of a nonlinear operator arising in statistical mechanics , 1991 .

[71]  J. Faraut,et al.  Analysis on Symmetric Cones , 1995 .

[72]  Béla de Sz. Nagy Sur les lattis linéaires de dimension finie , 1944 .

[73]  Michael Scheutzow,et al.  A characterization of the periods of periodic points of 1-norm nonexpansive maps , 2002 .

[74]  Ronald E. Bruck Properties of fixed-point sets of nonexpansive mappings in Banach spaces , 1973 .

[75]  Khalid Koufany,et al.  Application of Hilbert’s Projective Metric on Symmetric Cones , 2006 .

[76]  Cormac Walsh,et al.  The horofunction boundary of finite-dimensional normed spaces , 2005, Mathematical Proceedings of the Cambridge Philosophical Society.

[77]  P. Polácik,et al.  Convergence to cycles as a typical asymptotic behavior in smooth strongly monotone discrete-time dynamical systems , 1992 .

[78]  Michael H. Schneider Matrix scaling, entropy minimization, and conjugate duality. I. existence conditions , 1989 .

[79]  E. Landau Handbuch der Lehre von der Verteilung der Primzahlen , 1974 .

[80]  Leo F. Boron,et al.  Positive solutions of operator equations , 1964 .

[81]  J. Lorenz,et al.  On the scaling of multidimensional matrices , 1989 .

[82]  Karl Löwner Über monotone Matrixfunktionen , 1934 .

[83]  A. C. Thompson ON CERTAIN CONTRACTION MAPPINGS IN A PARTIALLY ORDERED VECTOR SPACE , 1963 .

[84]  Roger D. Nussbaum,et al.  Denjoy–Wolff theorems, Hilbert metric nonexpansive maps and reproduction–decimation operators , 2008 .

[85]  Samuel Karlin,et al.  On a Theorem of P. Nowosad , 1967 .

[86]  Roger D. Nussbaum,et al.  An elementary proof of the Birkhoff-Hopf theorem , 1995, Mathematical Proceedings of the Cambridge Philosophical Society.

[87]  B. Tam,et al.  A CONE-THEORETIC APPROACH TO THE SPECTRAL THEORU OF POSITIVE LINEAR OPERATORS: THE FINITE-DIMENSIONAL CASE , 2001 .

[88]  Peter Takáč,et al.  Asymptotic behavior of discrete-time semigroups of sublinear, strongly increasing mappings with applications to biology , 1990 .

[89]  A. Potter,et al.  APPLICATIONS OF HILBERT'S PROJECTIVE METRIC TO CERTAIN CLASSES OF NON-HOMOGENEOUS OPERATORS , 1977 .

[90]  Cormac Walsh,et al.  The horofunction boundary of the Hilbert geometry , 2006, math/0611920.

[91]  J. Vandergraft Spectral properties of matrices which have invariant cones , 1968 .

[92]  David A. Cox The Arithmetic-Geometric Mean of Gauss , 2004 .

[93]  R. Brualdi The DAD theorem for arbitrary row sums , 1974 .

[94]  Alan F. Beardon,et al.  The dynamics of contractions , 1997, Ergodic Theory and Dynamical Systems.

[95]  Bas Lemmens,et al.  Nonexpansive mappings on Hilbert's metric spaces , 2011 .

[96]  Anders Karlsson,et al.  Hilbert metrics and Minkowski norms , 2004 .

[97]  Michael H. Schneider Matrix scaling, entropy minimization, and conjugate duality (II): The dual problem , 1990, Math. Program..

[98]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[99]  B. B. Phadke A triangular world with hexagonal circles , 1975 .

[100]  R. Bellman Dynamic programming. , 1957, Science.

[101]  M. Hirsch,et al.  4. Monotone Dynamical Systems , 2005 .

[102]  B. Tam On the distinguished eigenvalues of a cone-preserving map , 1990 .

[103]  Elon Kohlberg,et al.  The Perron-Frobenius theorem without additivity , 1982 .

[104]  M. Morishima Equilibrium, stability, and growth , 1964 .

[105]  Roger D. Nussbaum,et al.  Fixed point theorems and Denjoy-Wolff theorems for Hilbert's projective metric in infinite dimensions , 2007 .

[106]  Elon Kohlberg,et al.  The Asymptotic Theory of Stochastic Games , 1976, Math. Oper. Res..

[107]  I. Csiszár $I$-Divergence Geometry of Probability Distributions and Minimization Problems , 1975 .

[108]  Roger D. Nussbaum,et al.  A limit set trichotomy for self-mappings of normal cones in banach spaces , 1993 .

[109]  R. Nussbaum Iterated nonlinear maps and Hilbert's projective metric: a summary , 1987 .

[110]  Michael Scheutzow,et al.  Transitive actions of finite abelian groups of sup-norm isometries , 2007, Eur. J. Comb..

[111]  R. Nussbaum Hilbert's Projective Metric and Iterated Nonlinear Maps , 1988 .

[112]  S. M. Verduyn Lunel,et al.  Generalizations of the Perron-Frobenius Theorem for Nonlinear Maps , 1999 .

[113]  M. Slemrod,et al.  Asymptotic behavior of nonlinear contraction semigroups , 1973 .

[114]  Kazimierz Goebel,et al.  Some problems in metric fixed point theory , 2008 .

[115]  Elon Kohlberg,et al.  The Contraction Mapping Approach to the Perron-Frobenius Theory: Why Hilbert's Metric? , 1982, Math. Oper. Res..

[116]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[117]  Marianne Akian,et al.  Stability and convergence in discrete convex monotone dynamical systems , 2010, 1003.5346.

[118]  H. Wielandt Unzerlegbare, nicht negative Matrizen , 1950 .

[119]  Ulrich Krause Relative Stability for Ascending and Positively Homogeneous Operators on Banach Spaces , 1994 .

[120]  H. Freudenthal,et al.  Dehnungen, Verkürzungen, Isometrien , 1936 .

[121]  J. Neumann,et al.  On an Algebraic generalization of the quantum mechanical formalism , 1934 .

[122]  Hans Schneider,et al.  The spectrum of a nonlinear operator associated with a matrix , 1969 .

[123]  Garrett Birkhoff,et al.  Uniformly semi-primitive multiplicative processes , 1962 .

[124]  Richard Courant,et al.  Wiley Classics Library , 2011 .

[125]  U. Rothblum Generalized scalings satisfying linear equations , 1989 .

[126]  F. F. Bonsall,et al.  Endomorphisms of Partially Ordered Vector Spaces , 1955 .

[127]  William Ian Miller,et al.  The maximum order of an element of a finite symmetric group , 1987 .

[128]  Roger D. Nussbaum,et al.  Lattice isomorphisms and iterates of nonexpansive maps , 1994 .

[129]  Ulrich Krause,et al.  A nonlinear extension of the Birkhoff-Jentzsch theorem☆ , 1986 .

[130]  S. M. Verduyn Lunel,et al.  Lower and upper bounds for ω-limit sets of nonexpansive maps , 2001 .

[131]  H. H. Schaefer,et al.  On nonlinear positive operators. , 1959 .

[132]  Roger D. Nussbaum,et al.  Eigenvectors of Order‐Preserving Linear Operators , 1998 .

[133]  M. V. Menon REDUCTION OF A MATRIX WITH POSITIVE ELEMENTS TO A DOUBLY STOCHASTIC MATRIX , 1967 .

[134]  Marianne Akian,et al.  Iteration of order preserving subhomogeneous maps on a cone , 2004, Mathematical Proceedings of the Cambridge Philosophical Society.

[135]  Roger D. Nussbaum,et al.  I Integral Equations and Operator Theory Periodic Points of Positive Linear Operators and Perron-frobenius Operators , 2022 .

[136]  Jeremy Gunawardena,et al.  Iterates of maps which are non-expansive in Hilbert's projective metric , 2003, Kybernetika.

[137]  Krzysztof Wysocki,et al.  Behavior of directions of solutions of differential equations , 1992, Differential and Integral Equations.

[138]  Jean-Pierre Massias,et al.  Majoration explicite de l'ordre maximum d'un élément du groupe symétrique , 1984 .

[139]  Bas Lemmens,et al.  A note on periodic points of order preserving subhomogeneous maps , 2005 .

[140]  G. Birkhoff Extensions of Jentzsch’s theorem , 1957 .

[141]  Brian Lins,et al.  Asymptotic behavior of nonexpansive mappings in finite dimensional normed spaces , 2008 .

[142]  Peter Takáč,et al.  Convergence in the part metric for discrete dynamical systems in ordered topological cones , 1996 .

[143]  Anders Karlsson,et al.  Horoballs in simplices and Minkowski spaces , 2006, Int. J. Math. Math. Sci..

[144]  Jean Cochet-Terrasson A constructive xed point theorem for min-max functions , 1999 .

[145]  R. Brualdi,et al.  The diagonal equivalence of a nonnegative matrix to a stochastic matrix , 1966 .

[146]  Abraham Neyman,et al.  Stochastic games and nonexpansive maps , 2003 .

[147]  J. Swetits,et al.  On a Class of Positive Linear Operators , 1973, Canadian Mathematical Bulletin.

[148]  M. Edelstein,et al.  On non-expansive mappings of Banach spaces , 1964, Mathematical Proceedings of the Cambridge Philosophical Society.

[149]  Bas Lemmens,et al.  Dynamics of non-expansive maps on strictly convex Banach spaces , 2009 .

[150]  Roger D. Nussbaum,et al.  Entropy Minimization, Hilbert′s Projective Metric, and Scaling Integral Kernels , 1993 .

[151]  C. Sparrow,et al.  Extension of order-preserving maps on a cone , 2003, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[152]  E. Seneta Non-negative Matrices and Markov Chains , 2008 .

[153]  L. Khachiyan,et al.  ON THE COMPLEXITY OF NONNEGATIVE-MATRIX SCALING , 1996 .

[154]  A. F. Beardon,et al.  The Klein, Hilbert and Poincaré metrics of a domain , 1999 .

[155]  Thomas Hawkins Continued fractions and the origins of the Perron–Frobenius theorem , 2008 .

[156]  Simeon Reich,et al.  The Denjoy–Wolff Theorem in the Open Unit Ball of a Strictly Convex Banach Space , 1999 .

[157]  Roger D. Nussbaum,et al.  Eigenvectors of nonlinear positive operators and the linear Krein-Rutman theorem , 1981 .

[158]  Roger D. Nussbaum,et al.  A generalization of the Ascoli theorem and an application to functional differential equations , 1971 .

[159]  Angus E. Taylor Introduction to functional analysis , 1959 .

[160]  P. Bushell Hilbert's metric and positive contraction mappings in a Banach space , 1973 .

[161]  Michael H. Schneider,et al.  Scaling Matrices to Prescribed Row and Column Maxima , 1994, SIAM J. Matrix Anal. Appl..

[162]  Michael Scheutzow,et al.  Admissible Arrays and a Nonlinear Generalization of Perron–Frobenius Theory , 1998 .

[163]  M. Crandall,et al.  Some relations between nonexpansive and order preserving mappings , 1980 .

[164]  Elon Kohlberg,et al.  Asymptotic behavior of nonexpansive mappings in normed linear spaces , 1981 .

[165]  Geert Jan Olsder,et al.  Synchronization and Linearity: An Algebra for Discrete Event Systems , 1994 .

[166]  Marco Abate,et al.  Iteration theory of holomorphic maps on taut manifolds , 1989 .

[167]  Roger D. Nussbaum,et al.  Applications of the Birkhoff–Hopf theorem to the spectral theory of positive linear operators , 1995, Mathematical Proceedings of the Cambridge Philosophical Society.

[168]  Michael Scheutzow,et al.  On the dynamics of sup-norm non-expansive maps , 2005, Ergodic Theory and Dynamical Systems.

[169]  Roger D. Nussbaum,et al.  Estimates of the periods of periodic points for nonexpansive operators , 1991 .

[170]  Guillaume Vigeral,et al.  A maximin characterisation of the escape rate of non-expansive mappings in metrically convex spaces , 2010, Mathematical Proceedings of the Cambridge Philosophical Society.

[171]  Roger D. Nussbaum,et al.  Approximation by polynomials with nonnegative coefficients and the spectral theory of positive operators , 1998 .

[172]  Mustafa A. Akcoglu,et al.  Nonlinear models of diffusion on a finite space , 1987 .

[173]  B. Parlett,et al.  Methods for Scaling to Doubly Stochastic Form , 1982 .