Nonlinear Perron-Frobenius Theory
暂无分享,去创建一个
[1] Ronald A. Howard,et al. Dynamic Programming and Markov Processes , 1960 .
[2] Simeon Reich,et al. THE DENJOY-WOLFF THEOREM FOR CONDENSING HOLOMORPHIC MAPPINGS , 1999 .
[3] Roger D. Nussbaum,et al. Iterated linear maps on a cone and Denjoy–Wolff theorems , 2006 .
[4] Anders Karlsson,et al. Non-expanding maps and Busemann functions , 2001, Ergodic Theory and Dynamical Systems.
[5] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[6] Bas Lemmens,et al. Periods of order-preserving nonexpansive maps on strictly convex normed spaces , 2002 .
[7] P. Bushell,et al. On the Projective Contraction Ratio for Positive Linear Mappings , 1973 .
[8] Stefan Straszewicz,et al. Über exponierte Punkte abgeschlossener Punktmengen , 1935 .
[9] Elon Kohlberg,et al. Invariant Half-Lines of Nonexpansive Piecewise-Linear Transformations , 1980, Math. Oper. Res..
[10] M. Kreĭn,et al. Linear operators leaving invariant a cone in a Banach space , 1950 .
[11] John Mallet-Paret,et al. Generalizing the Krein–Rutman theorem, measures of noncompactness and the fixed point index , 2010 .
[12] F. Bonsall,et al. Linear Operators in Complete Positive Cones , 1958 .
[13] L. Mirsky,et al. The Theory of Matrices , 1961, The Mathematical Gazette.
[14] H. Samelson. On the Perron-Frobenius theorem. , 1957 .
[15] R. Sine,et al. A nonlinear Perron-Frobenius theorem , 1990 .
[16] J. '. Paiva,et al. Hilbert's fourth problem in two dimensions. , 2003 .
[17] Bas Lemmens,et al. Continuity of the cone spectral radius , 2011, 1107.4532.
[18] Jean-Paul Chilès,et al. Wiley Series in Probability and Statistics , 2012 .
[19] Alex Samorodnitsky,et al. A Deterministic Strongly Polynomial Algorithm for Matrix Scaling and Approximate Permanents , 2000, Comb..
[20] Yorimasa Oshime,et al. An extension of Morishima’s nonlinear Perron-Frobenius theorem , 1983 .
[21] M. V. Menon. Some spectral properties of an operator associated with a pair of nonnegative matrices , 1968 .
[22] Richard Sinkhorn. A Relationship Between Arbitrary Positive Matrices and Doubly Stochastic Matrices , 1964 .
[23] A. M. Ostrowski,et al. On positive matrices , 1963 .
[24] Richard Sinkhorn,et al. Concerning nonnegative matrices and doubly stochastic matrices , 1967 .
[25] Shmuel Friedland,et al. The Growth of Powers of a Nonnegative Matrix , 1980, SIAM J. Algebraic Discret. Methods.
[26] M. Scheutzow,et al. Periodic points of nonexpansive maps and nonlinear generalizations of the Perron-Frobenius theory , 1998 .
[27] M. Fekete. Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten , 1918 .
[28] Michael Scheutzow,et al. Periods of Nonexpansive Operators on Finite l1-Spaces , 1988, Eur. J. Comb..
[29] F. F. Bonsall. Sublinear Functionals and Ideals in Partially Ordered Vector Spaces , 1954 .
[30] L. Shapley,et al. Stochastic Games* , 1953, Proceedings of the National Academy of Sciences.
[31] A. F. Beardon,et al. Iteration of Contractions and Analytic Maps , 1990 .
[32] O. Perron,et al. Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus , 1907 .
[33] R. Bapat. D1AD2 theorems for multidimensional matrices , 1982 .
[34] S. Fienberg. An Iterative Procedure for Estimation in Contingency Tables , 1970 .
[35] L. Collatz. Einschließungssatz für die charakteristischen Zahlen von Matrizen , 1942 .
[36] Jean Mairesse,et al. Finite-range topical functions and uniformly topical functions , 2006 .
[37] Jonathan M. Borwein,et al. Entropy minimization, DAD problems, and doubly stochastic kernels , 1994 .
[38] F. L. Bauer. An elementary proof of the hopf inequality for positive operators , 1965 .
[39] S. Janson,et al. Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2011 .
[40] Ulrich Krause,et al. A limit set trichotomy for monotone nonlinear dynamical systems , 1992 .
[41] D. Lubell. A Short Proof of Sperner’s Lemma , 1966 .
[42] Jeremy Gunawardena,et al. From max-plus algebra to nonexpansive mappings: a nonlinear theory for discrete event systems , 2003, Theor. Comput. Sci..
[43] A. Ostrowski,et al. Positive Matrices and Functional Analysis , 1983 .
[44] S. Gaubert,et al. Spectral theorem for convex monotone homogeneous maps, and ergodic control , 2001, math/0110108.
[45] H. H. Schaefer,et al. Some spectral properties of positive linear operators , 1960 .
[46] John Mallet-Paret,et al. Eigenvalues for a class of homogeneous cone maps arising from max-plus operators , 2002 .
[47] Peter E. Kloeden,et al. A generalization of the Perron-Frobenius theorem , 2000 .
[48] Roger D. Nussbaum,et al. Omega limit sets of nonexpansive maps: finiteness and cardinality estimates , 1990, Differential and Integral Equations.
[49] M. Gromov,et al. Hyperbolic Manifolds, Groups and Actions , 1981 .
[50] O. Perron. Zur Theorie der Matrices , 1907 .
[51] N. Aronszajn,et al. EXTENSION OF UNIFORMLY CONTINUOUS TRANSFORMATIONS AND HYPERCONVEX METRIC SPACES , 1956 .
[52] R. Nussbaum. Convexity and log convexity for the spectral radius , 1986 .
[53] Brian Lins,et al. A Denjoy–Wolff theorem for Hilbert metric nonexpansive maps on polyhedral domains , 2007, Mathematical Proceedings of the Cambridge Philosophical Society.
[54] P. Nowosad,et al. On the integral equation κf = 1f arising in a problem in communication , 1966 .
[55] M. Hirsch. Stability and convergence in strongly monotone dynamical systems. , 1988 .
[56] D. Hilbert. Ueber die gerade Linie als kürzeste Verbindung zweier Punkte , 1895 .
[57] E. Sperner. Ein Satz über Untermengen einer endlichen Menge , 1928 .
[58] Jonathan M. Borwein,et al. The Arithmetic-Geometric Mean and Fast Computation of Elementary Functions , 1984 .
[59] S. Gaubert,et al. The Perron-Frobenius theorem for homogeneous, monotone functions , 2001, math/0105091.
[60] Roger D. Nussbaum,et al. Asymptotic estimates for the periods of periodic points of non-expansive maps , 2003, Ergodic Theory and Dynamical Systems.
[61] Jonathan M. Borwein,et al. Decomposition of Multivariate Functions , 1992, Canadian Journal of Mathematics.
[62] Helmut H. Schaefer,et al. Positive Transformationen in lokalkonvexen halbgeordneten Vektorräumen , 1955 .
[63] B. C. Carlson. Algorithms Involving Arithmetic and Geometric Means , 1971 .
[64] A. Całka,et al. On conditions under which isometries have bounded orbits , 1984 .
[65] P. Bushell,et al. The Cayley-Hilbert metric and positive operators , 1986 .
[66] R. Nussbaum. Iterated nonlinear maps and Hilbert’s projective metric. II , 1989 .
[67] P. Bushell,et al. On solutions of the matrix equation T'AT = A2 , 1974 .
[68] Roger D. Nussbaum,et al. Finsler structures for the part metric and Hilbert's projective metric and applications to ordinary differential equations , 1994, Differential and Integral Equations.
[69] Koichiro Yamamoto. Logarithmic order of free distributive lattice , 1954 .
[70] Roger D. Nussbaum,et al. Convergence of iterates of a nonlinear operator arising in statistical mechanics , 1991 .
[71] J. Faraut,et al. Analysis on Symmetric Cones , 1995 .
[72] Béla de Sz. Nagy. Sur les lattis linéaires de dimension finie , 1944 .
[73] Michael Scheutzow,et al. A characterization of the periods of periodic points of 1-norm nonexpansive maps , 2002 .
[74] Ronald E. Bruck. Properties of fixed-point sets of nonexpansive mappings in Banach spaces , 1973 .
[75] Khalid Koufany,et al. Application of Hilbert’s Projective Metric on Symmetric Cones , 2006 .
[76] Cormac Walsh,et al. The horofunction boundary of finite-dimensional normed spaces , 2005, Mathematical Proceedings of the Cambridge Philosophical Society.
[77] P. Polácik,et al. Convergence to cycles as a typical asymptotic behavior in smooth strongly monotone discrete-time dynamical systems , 1992 .
[78] Michael H. Schneider. Matrix scaling, entropy minimization, and conjugate duality. I. existence conditions , 1989 .
[79] E. Landau. Handbuch der Lehre von der Verteilung der Primzahlen , 1974 .
[80] Leo F. Boron,et al. Positive solutions of operator equations , 1964 .
[81] J. Lorenz,et al. On the scaling of multidimensional matrices , 1989 .
[82] Karl Löwner. Über monotone Matrixfunktionen , 1934 .
[83] A. C. Thompson. ON CERTAIN CONTRACTION MAPPINGS IN A PARTIALLY ORDERED VECTOR SPACE , 1963 .
[84] Roger D. Nussbaum,et al. Denjoy–Wolff theorems, Hilbert metric nonexpansive maps and reproduction–decimation operators , 2008 .
[85] Samuel Karlin,et al. On a Theorem of P. Nowosad , 1967 .
[86] Roger D. Nussbaum,et al. An elementary proof of the Birkhoff-Hopf theorem , 1995, Mathematical Proceedings of the Cambridge Philosophical Society.
[87] B. Tam,et al. A CONE-THEORETIC APPROACH TO THE SPECTRAL THEORU OF POSITIVE LINEAR OPERATORS: THE FINITE-DIMENSIONAL CASE , 2001 .
[88] Peter Takáč,et al. Asymptotic behavior of discrete-time semigroups of sublinear, strongly increasing mappings with applications to biology , 1990 .
[89] A. Potter,et al. APPLICATIONS OF HILBERT'S PROJECTIVE METRIC TO CERTAIN CLASSES OF NON-HOMOGENEOUS OPERATORS , 1977 .
[90] Cormac Walsh,et al. The horofunction boundary of the Hilbert geometry , 2006, math/0611920.
[91] J. Vandergraft. Spectral properties of matrices which have invariant cones , 1968 .
[92] David A. Cox. The Arithmetic-Geometric Mean of Gauss , 2004 .
[93] R. Brualdi. The DAD theorem for arbitrary row sums , 1974 .
[94] Alan F. Beardon,et al. The dynamics of contractions , 1997, Ergodic Theory and Dynamical Systems.
[95] Bas Lemmens,et al. Nonexpansive mappings on Hilbert's metric spaces , 2011 .
[96] Anders Karlsson,et al. Hilbert metrics and Minkowski norms , 2004 .
[97] Michael H. Schneider. Matrix scaling, entropy minimization, and conjugate duality (II): The dual problem , 1990, Math. Program..
[98] W. J. Thron,et al. Encyclopedia of Mathematics and its Applications. , 1982 .
[99] B. B. Phadke. A triangular world with hexagonal circles , 1975 .
[100] R. Bellman. Dynamic programming. , 1957, Science.
[101] M. Hirsch,et al. 4. Monotone Dynamical Systems , 2005 .
[102] B. Tam. On the distinguished eigenvalues of a cone-preserving map , 1990 .
[103] Elon Kohlberg,et al. The Perron-Frobenius theorem without additivity , 1982 .
[104] M. Morishima. Equilibrium, stability, and growth , 1964 .
[105] Roger D. Nussbaum,et al. Fixed point theorems and Denjoy-Wolff theorems for Hilbert's projective metric in infinite dimensions , 2007 .
[106] Elon Kohlberg,et al. The Asymptotic Theory of Stochastic Games , 1976, Math. Oper. Res..
[107] I. Csiszár. $I$-Divergence Geometry of Probability Distributions and Minimization Problems , 1975 .
[108] Roger D. Nussbaum,et al. A limit set trichotomy for self-mappings of normal cones in banach spaces , 1993 .
[109] R. Nussbaum. Iterated nonlinear maps and Hilbert's projective metric: a summary , 1987 .
[110] Michael Scheutzow,et al. Transitive actions of finite abelian groups of sup-norm isometries , 2007, Eur. J. Comb..
[111] R. Nussbaum. Hilbert's Projective Metric and Iterated Nonlinear Maps , 1988 .
[112] S. M. Verduyn Lunel,et al. Generalizations of the Perron-Frobenius Theorem for Nonlinear Maps , 1999 .
[113] M. Slemrod,et al. Asymptotic behavior of nonlinear contraction semigroups , 1973 .
[114] Kazimierz Goebel,et al. Some problems in metric fixed point theory , 2008 .
[115] Elon Kohlberg,et al. The Contraction Mapping Approach to the Perron-Frobenius Theory: Why Hilbert's Metric? , 1982, Math. Oper. Res..
[116] Alexander Schrijver,et al. Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.
[117] Marianne Akian,et al. Stability and convergence in discrete convex monotone dynamical systems , 2010, 1003.5346.
[118] H. Wielandt. Unzerlegbare, nicht negative Matrizen , 1950 .
[119] Ulrich Krause. Relative Stability for Ascending and Positively Homogeneous Operators on Banach Spaces , 1994 .
[120] H. Freudenthal,et al. Dehnungen, Verkürzungen, Isometrien , 1936 .
[121] J. Neumann,et al. On an Algebraic generalization of the quantum mechanical formalism , 1934 .
[122] Hans Schneider,et al. The spectrum of a nonlinear operator associated with a matrix , 1969 .
[123] Garrett Birkhoff,et al. Uniformly semi-primitive multiplicative processes , 1962 .
[124] Richard Courant,et al. Wiley Classics Library , 2011 .
[125] U. Rothblum. Generalized scalings satisfying linear equations , 1989 .
[126] F. F. Bonsall,et al. Endomorphisms of Partially Ordered Vector Spaces , 1955 .
[127] William Ian Miller,et al. The maximum order of an element of a finite symmetric group , 1987 .
[128] Roger D. Nussbaum,et al. Lattice isomorphisms and iterates of nonexpansive maps , 1994 .
[129] Ulrich Krause,et al. A nonlinear extension of the Birkhoff-Jentzsch theorem☆ , 1986 .
[130] S. M. Verduyn Lunel,et al. Lower and upper bounds for ω-limit sets of nonexpansive maps , 2001 .
[131] H. H. Schaefer,et al. On nonlinear positive operators. , 1959 .
[132] Roger D. Nussbaum,et al. Eigenvectors of Order‐Preserving Linear Operators , 1998 .
[133] M. V. Menon. REDUCTION OF A MATRIX WITH POSITIVE ELEMENTS TO A DOUBLY STOCHASTIC MATRIX , 1967 .
[134] Marianne Akian,et al. Iteration of order preserving subhomogeneous maps on a cone , 2004, Mathematical Proceedings of the Cambridge Philosophical Society.
[135] Roger D. Nussbaum,et al. I Integral Equations and Operator Theory Periodic Points of Positive Linear Operators and Perron-frobenius Operators , 2022 .
[136] Jeremy Gunawardena,et al. Iterates of maps which are non-expansive in Hilbert's projective metric , 2003, Kybernetika.
[137] Krzysztof Wysocki,et al. Behavior of directions of solutions of differential equations , 1992, Differential and Integral Equations.
[138] Jean-Pierre Massias,et al. Majoration explicite de l'ordre maximum d'un élément du groupe symétrique , 1984 .
[139] Bas Lemmens,et al. A note on periodic points of order preserving subhomogeneous maps , 2005 .
[140] G. Birkhoff. Extensions of Jentzsch’s theorem , 1957 .
[141] Brian Lins,et al. Asymptotic behavior of nonexpansive mappings in finite dimensional normed spaces , 2008 .
[142] Peter Takáč,et al. Convergence in the part metric for discrete dynamical systems in ordered topological cones , 1996 .
[143] Anders Karlsson,et al. Horoballs in simplices and Minkowski spaces , 2006, Int. J. Math. Math. Sci..
[144] Jean Cochet-Terrasson. A constructive xed point theorem for min-max functions , 1999 .
[145] R. Brualdi,et al. The diagonal equivalence of a nonnegative matrix to a stochastic matrix , 1966 .
[146] Abraham Neyman,et al. Stochastic games and nonexpansive maps , 2003 .
[147] J. Swetits,et al. On a Class of Positive Linear Operators , 1973, Canadian Mathematical Bulletin.
[148] M. Edelstein,et al. On non-expansive mappings of Banach spaces , 1964, Mathematical Proceedings of the Cambridge Philosophical Society.
[149] Bas Lemmens,et al. Dynamics of non-expansive maps on strictly convex Banach spaces , 2009 .
[150] Roger D. Nussbaum,et al. Entropy Minimization, Hilbert′s Projective Metric, and Scaling Integral Kernels , 1993 .
[151] C. Sparrow,et al. Extension of order-preserving maps on a cone , 2003, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[152] E. Seneta. Non-negative Matrices and Markov Chains , 2008 .
[153] L. Khachiyan,et al. ON THE COMPLEXITY OF NONNEGATIVE-MATRIX SCALING , 1996 .
[154] A. F. Beardon,et al. The Klein, Hilbert and Poincaré metrics of a domain , 1999 .
[155] Thomas Hawkins. Continued fractions and the origins of the Perron–Frobenius theorem , 2008 .
[156] Simeon Reich,et al. The Denjoy–Wolff Theorem in the Open Unit Ball of a Strictly Convex Banach Space , 1999 .
[157] Roger D. Nussbaum,et al. Eigenvectors of nonlinear positive operators and the linear Krein-Rutman theorem , 1981 .
[158] Roger D. Nussbaum,et al. A generalization of the Ascoli theorem and an application to functional differential equations , 1971 .
[159] Angus E. Taylor. Introduction to functional analysis , 1959 .
[160] P. Bushell. Hilbert's metric and positive contraction mappings in a Banach space , 1973 .
[161] Michael H. Schneider,et al. Scaling Matrices to Prescribed Row and Column Maxima , 1994, SIAM J. Matrix Anal. Appl..
[162] Michael Scheutzow,et al. Admissible Arrays and a Nonlinear Generalization of Perron–Frobenius Theory , 1998 .
[163] M. Crandall,et al. Some relations between nonexpansive and order preserving mappings , 1980 .
[164] Elon Kohlberg,et al. Asymptotic behavior of nonexpansive mappings in normed linear spaces , 1981 .
[165] Geert Jan Olsder,et al. Synchronization and Linearity: An Algebra for Discrete Event Systems , 1994 .
[166] Marco Abate,et al. Iteration theory of holomorphic maps on taut manifolds , 1989 .
[167] Roger D. Nussbaum,et al. Applications of the Birkhoff–Hopf theorem to the spectral theory of positive linear operators , 1995, Mathematical Proceedings of the Cambridge Philosophical Society.
[168] Michael Scheutzow,et al. On the dynamics of sup-norm non-expansive maps , 2005, Ergodic Theory and Dynamical Systems.
[169] Roger D. Nussbaum,et al. Estimates of the periods of periodic points for nonexpansive operators , 1991 .
[170] Guillaume Vigeral,et al. A maximin characterisation of the escape rate of non-expansive mappings in metrically convex spaces , 2010, Mathematical Proceedings of the Cambridge Philosophical Society.
[171] Roger D. Nussbaum,et al. Approximation by polynomials with nonnegative coefficients and the spectral theory of positive operators , 1998 .
[172] Mustafa A. Akcoglu,et al. Nonlinear models of diffusion on a finite space , 1987 .
[173] B. Parlett,et al. Methods for Scaling to Doubly Stochastic Form , 1982 .