On the time dependence of holographic complexity for charged AdS black holes with scalar hair

[1]  Run-Qiu Yang,et al.  Interior structure and complexity growth rate of holographic superconductor from M-theory , 2022, Journal of High Energy Physics.

[2]  M. Henneaux The final Kasner regime inside black holes with scalar or vector hair , 2022, Journal of High Energy Physics.

[3]  David Vegh,et al.  Kasner geometries inside holographic superconductors , 2021, Journal of High Energy Physics.

[4]  Komeil Babaei Velni,et al.  Complexity growth in Gubser–Rocha models with momentum relaxation , 2021, The European Physical Journal C.

[5]  R. Myers,et al.  Does Complexity Equal Anything? , 2021, Physical review letters.

[6]  Luca V. Iliesiu,et al.  The volume of the black hole interior at late times , 2021, Journal of High Energy Physics.

[7]  S. Chapman,et al.  Complexity for Conformal Field Theories in General Dimensions. , 2021, Physical review letters.

[8]  J. Urry Complexity , 2006, Interpreting Art.

[9]  R. de Mello Koch,et al.  Complexity from spinning primaries , 2021, Journal of High Energy Physics.

[10]  A. Bernamonti,et al.  Holographic and QFT complexity with angular momentum , 2021, Journal of High Energy Physics.

[11]  M. Rafiee,et al.  What’s inside a hairy black hole in massive gravity? , 2021, Journal of High Energy Physics.

[12]  Yu-Sen An,et al.  No Cauchy horizon theorem for nonlinear electrodynamics black holes with charged scalar hairs , 2021, Physical Review D.

[13]  Yaithd D. Olivas,et al.  Insensitivity of the complexity rate of change to the conformal anomaly and Lloyd’s bound as a possible renormalization condition , 2021, Physical Review D.

[14]  R. Auzzi,et al.  Geometry of quantum complexity , 2020, Physical Review D.

[15]  R. Cai,et al.  No inner-horizon theorem for black holes with charged scalar hairs , 2020, Journal of High Energy Physics.

[16]  S. Hartnoll,et al.  Diving into a holographic superconductor , 2020, SciPost Physics.

[17]  S. Hartnoll,et al.  Gravitational duals to the grand canonical ensemble abhor Cauchy horizons , 2020, Journal of High Energy Physics.

[18]  M. Flory,et al.  Geometry of complexity in conformal field theory , 2020, Physical Review Research.

[19]  Farzad Omidi Regularizations of action-complexity for a pure BTZ black hole microstate , 2020, Journal of High Energy Physics.

[20]  J. Erdmenger,et al.  Complexity measures from geometric actions onVirasoro and Kac-Moody orbits , 2020, Journal of High Energy Physics.

[21]  S. Hartnoll,et al.  Holographic flows from CFT to the Kasner universe , 2020, Journal of High Energy Physics.

[22]  Farzad Omidi,et al.  On the role of counterterms in holographic complexity , 2019, Journal of High Energy Physics.

[23]  Adam R. Brown,et al.  Complexity geometry of a single qubit , 2019, Physical Review D.

[24]  Keun-Young Kim,et al.  Complexity of holographic superconductors , 2019, Journal of High Energy Physics.

[25]  Javier M. Magán,et al.  Quantum Computation as Gravity. , 2018, Physical review letters.

[26]  S. Mahapatra,et al.  On the time dependence of holographic complexity in a dynamical Einstein-dilaton model , 2018, Journal of High Energy Physics.

[27]  R. Auzzi,et al.  Complexity and action for warped AdS black holes , 2018, Journal of High Energy Physics.

[28]  R. Auzzi,et al.  Volume and complexity for Warped AdS black holes , 2018, Journal of High Energy Physics.

[29]  R. Myers,et al.  Holographic complexity in Vaidya spacetimes. Part II , 2018, Journal of High Energy Physics.

[30]  R. Myers,et al.  Holographic complexity in Vaidya spacetimes. Part I , 2018, Journal of High Energy Physics.

[31]  R. Myers,et al.  Circuit complexity for free fermions , 2018, Journal of High Energy Physics.

[32]  Amin Faraji Astaneh,et al.  Complexity growth with Lifshitz scaling and hyperscaling violation , 2018, Journal of High Energy Physics.

[33]  S. Bolognesi,et al.  On some universal features of the holographic quantum complexity of bulk singularities , 2018, Journal of High Energy Physics.

[34]  Rifath Khan,et al.  Circuit complexity in fermionic field theory , 2018, Physical Review D.

[35]  Yu-Sen An,et al.  Effect of the dilaton on holographic complexity growth , 2018, 1801.03638.

[36]  Yixu Wang,et al.  Holographic complexity of Einstein-Maxwell-Dilaton gravity , 2017, Journal of High Energy Physics.

[37]  F. Pastawski,et al.  Toward a Definition of Complexity for Quantum Field Theory States. , 2017, Physical review letters.

[38]  Adam R. Brown,et al.  Second law of quantum complexity , 2017, 1701.01107.

[39]  Josiah Couch,et al.  Holographic complexity and noncommutative gauge theory , 2017, 1710.07833.

[40]  Keun-Young Kim,et al.  Comparison of holographic and field theoretic complexities for time dependent thermofield double states , 2017, Journal of High Energy Physics.

[41]  Sotaro Sugishita,et al.  On the time dependence of holographic complexity , 2017, 1709.10184.

[42]  R. Myers,et al.  Circuit complexity in quantum field theory , 2017, 1707.08570.

[43]  T. Takayanagi,et al.  Anti-de Sitter Space from Optimization of Path Integrals in Conformal Field Theories. , 2017, Physical review letters.

[44]  S. Ross,et al.  Divergences in holographic complexity , 2016, 1612.05439.

[45]  Adam R. Brown,et al.  Quantum complexity and negative curvature , 2016, 1608.02612.

[46]  Kostas Skenderis,et al.  Phases of planar AdS black holes with axionic charge , 2016, 1612.07214.

[47]  Robert C. Myers,et al.  Comments on holographic complexity , 2016, Journal of High Energy Physics.

[48]  P. Nguyen,et al.  Noether charge, black hole volume, and complexity , 2016, 1610.02038.

[49]  Rafael D. Sorkin,et al.  Gravitational action with null boundaries , 2016, 1609.00207.

[50]  R. Cai,et al.  Action growth for AdS black holes , 2016, 1606.08307.

[51]  Daniel A. Roberts,et al.  Holographic Complexity Equals Bulk Action? , 2016, Physical review letters.

[52]  Daniel A. Roberts,et al.  Complexity, action, and black holes , 2015, 1512.04993.

[53]  E. Rabinovici,et al.  Holographic complexity and spacetime singularities , 2015, 1509.09291.

[54]  Leonard Susskind,et al.  The typical‐state paradox: diagnosing horizons with complexity , 2015, 1507.02287.

[55]  Leonard Susskind,et al.  Entanglement is not enough , 2014, 1411.0690.

[56]  L. Susskind,et al.  Complexity and Shock Wave Geometries , 2014, 1406.2678.

[57]  L. Susskind Computational complexity and black hole horizons , 2014, 1402.5674.

[58]  J. Maldacena,et al.  Time evolution of entanglement entropy from black hole interiors , 2013, 1303.1080.

[59]  S. Gubser,et al.  Ground states of holographic superconductors , 2009, 0908.1972.

[60]  G. Festuccia,et al.  A Bohr-Sommerfeld quantization formula for quasinormal frequencies of AdS black holes , 2008, 0811.1033.

[61]  S. Hartnoll,et al.  Holographic Superconductors , 2008, 0810.1563.

[62]  S. Hartnoll,et al.  Building a holographic superconductor. , 2008, Physical review letters.

[63]  T. Takayanagi,et al.  A covariant holographic entanglement entropy proposal , 2007, 0705.0016.

[64]  T. Takayanagi,et al.  Holographic Derivation of Entanglement Entropy from AdS/CFT , 2006, hep-th/0603001.

[65]  G. Festuccia,et al.  Excursions beyond the horizon: Black hole singularities in Yang-Mills theories. I. , 2005, hep-th/0506202.

[66]  Michael A. Nielsen,et al.  A geometric approach to quantum circuit lower bounds , 2005, Quantum Inf. Comput..

[67]  S. Shenker,et al.  The black hole singularity in AdS/CFT , 2003, hep-th/0306170.

[68]  H. Ooguri,et al.  Inside the horizon with AdS/CFT , 2002, hep-th/0212277.

[69]  J. Maldacena Eternal black holes in anti-de Sitter , 2001, hep-th/0106112.

[70]  S. Lloyd Ultimate physical limits to computation , 1999, Nature.

[71]  V. Balasubramanian,et al.  A Stress Tensor for Anti-de Sitter Gravity , 1999, hep-th/9902121.

[72]  T. Bowen Holographic particle detection , 1988 .

[73]  S. Chandrasekhar,et al.  On crossing the Cauchy horizon of a Reissner–Nordström black-hole , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[74]  D. Freedman,et al.  Stability in Gauged Extended Supergravity , 1982 .

[75]  R. Penrose,et al.  Internal instability in a Reissner-Nordström black hole , 1973 .