Nanocrystalline graphene at high temperatures: insight into nanoscale processes

In contrast to pristine graphene, nanocrystalline graphene shows a fundamentally different high-temperature behavior due to its reactive nature.

[1]  J. Robertson,et al.  Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[2]  B. Potapkin,et al.  Fast diffusion of a graphene flake on a graphene layer , 2010, 1102.4103.

[3]  L. A. Pesin Review Structure and properties of glass-like carbon , 2002 .

[4]  A. Krasheninnikov,et al.  Engineering the atomic structure of carbon nanotubes by a focused electron beam: new morphologies at the sub-nanometer scale. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[5]  Fengli Wang,et al.  Catalyst-free growth of nanocrystalline graphene/graphite patterns from photoresist. , 2013, Chemical communications.

[6]  Miquel Salmeron,et al.  Superlubric sliding of graphene nanoflakes on graphene. , 2013, ACS nano.

[7]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[8]  R. Krupke,et al.  Understanding the graphitization and growth of free-standing nanocrystalline graphene using in situ transmission electron microscopy. , 2017, Nanoscale.

[9]  T. Shi,et al.  Scalable fabrication of carbon-based MEMS/NEMS and their applications: a review , 2015 .

[10]  K. S. Coleman,et al.  Graphene synthesis: relationship to applications. , 2013, Nanoscale.

[11]  Gianaurelio Cuniberti,et al.  Understanding the catalyst-free transformation of amorphous carbon into graphene by current-induced annealing , 2012, Scientific Reports.

[12]  P. Harris New Perspectives on the Structure of Graphitic Carbons , 2005 .

[13]  J. Correa,et al.  Theoretical reproduction of superstructures revealed by stm on bilayer graphene , 2012, 1202.2612.

[14]  S. Xie,et al.  Direct Growth of Nanocrystalline Graphene/Graphite Transparent Electrodes on Si/SiO2 for Metal‐Free Schottky Junction Photodetectors , 2014 .

[15]  L. Wirtz,et al.  The phonon dispersion of graphite revisited , 2004, cond-mat/0404637.

[16]  P. J. F. Harris † Fullerene-related structure of commercial glassy carbons , 2004 .

[17]  Michael Walter,et al.  The atomic simulation environment-a Python library for working with atoms. , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[18]  J. Lawson,et al.  Modeling initial stage of phenolic pyrolysis: Graphitic precursor formation and interfacial effects , 2011 .

[19]  S. Stuart,et al.  A reactive potential for hydrocarbons with intermolecular interactions , 2000 .

[20]  Wan Neng,et al.  Fullerene growth from encapsulated graphene flakes. , 2014, Nanoscale.

[21]  R. Franklin Crystallite growth in graphitizing and non-graphitizing carbons , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[22]  James J. P. Stewart,et al.  Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters , 2012, Journal of Molecular Modeling.

[23]  A. Kirkland,et al.  Stability and dynamics of the tetravacancy in graphene. , 2014, Nano letters.

[24]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[25]  R. Egerton,et al.  Mechanisms of radiation damage in beam‐sensitive specimens, for TEM accelerating voltages between 10 and 300 kV , 2012, Microscopy research and technique.

[26]  K. Kawamura,et al.  Structure of Glassy Carbon , 1971, Nature.

[27]  James W. Evans,et al.  Smoluchowski ripening of Ag islands on Ag(100) , 1999 .

[28]  Hui‐Ming Cheng,et al.  Edge-controlled growth and kinetics of single-crystal graphene domains by chemical vapor deposition , 2013, Proceedings of the National Academy of Sciences.

[29]  Evolution of Glassy Carbon Microstructure: In Situ Transmission Electron Microscopy of the Pyrolysis Process , 2018, Scientific Reports.

[30]  Non-invasive transmission electron microscopy of vacancy defects in graphene produced by ion irradiation. , 2014, Nanoscale.

[31]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.

[32]  M. Caturla,et al.  Graphene flakes obtained by local electro-exfoliation of graphite with a STM tip. , 2017, Physical chemistry chemical physics : PCCP.

[33]  A. Krasheninnikov,et al.  Structural defects in graphene. , 2011, ACS nano.

[34]  M. Gearing,et al.  Correction: Corrigendum: Tonic inhibition in dentate gyrus impairs long-term potentiation and memory in an Alzheimer’s disease model , 2014, Nature Communications.

[35]  Ferdinand Scholz,et al.  Transformations of carbon adsorbates on graphene substrates under extreme heat. , 2011, Nano letters.

[36]  Peter J. F. Harris,et al.  Fullerene-related structure of commercial glassy carbons , 2004 .

[37]  Seiji Takeda,et al.  Atomic-scale in-situ observation of carbon nanotube growth from solid state iron carbide nanoparticles. , 2008, Nano letters.

[38]  Yimin A. Wu,et al.  Spatial control of defect creation in graphene at the nanoscale , 2012, Nature Communications.

[39]  H. Ruda,et al.  Smoluchowski ripening and random percolation in epitaxial Si 1-x Ge x /Si(001) islands , 2002 .

[40]  R. Krupke,et al.  Light emission, light detection and strain sensing with nanocrystalline graphene , 2015, Nanotechnology.

[41]  P. Lu,et al.  In situ observation of graphene sublimation and multi-layer edge reconstructions , 2009, Proceedings of the National Academy of Sciences.

[42]  J. Robertson,et al.  Metal‐Free Growth of Nanographene on Silicon Oxides for Transparent Conducting Applications , 2012 .

[43]  I. Snook,et al.  Thermal stability of graphene edge structure and graphene nanoflakes. , 2008, The Journal of chemical physics.

[44]  Seok‐In Na,et al.  One-step synthesis of carbon nanosheets converted from a polycyclic compound and their direct use as transparent electrodes of ITO-free organic solar cells. , 2014, Nanoscale.

[45]  L. Dubrovinsky,et al.  Pressure-induced isostructural phase transformation in γ -B 28 , 2010 .

[46]  A. Stukowski Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool , 2009 .

[47]  J. Biskupek,et al.  Stop-Frame Filming and Discovery of Reactions at the Single-Molecule Level by Transmission Electron Microscopy , 2017, ACS nano.

[48]  H. Chan,et al.  Direct observation of carbon nanostructure growth at liquid-solid interfaces. , 2014, Chemical communications.

[49]  N. Besley,et al.  Direct transformation of graphene to fullerene. , 2010, Nature chemistry.

[50]  A. Kirkland,et al.  Partial Dislocations in Graphene and Their Atomic Level Migration Dynamics. , 2015, Nano letters.

[51]  K. Gschneidner,et al.  Preparation, crystal structure, heat capacity, magnetism, and the magnetocaloric effect of Pr5Ni1.9Si3 and PrNi , 2003 .

[52]  M. Madou,et al.  SU8 Derived Glassy Carbon for Lithium Ion Batteries , 2014 .

[53]  Moon J. Kim,et al.  In situ studies on the shrinkage and expansion of graphene nanopores under electron beam irradiation at temperatures in the range of 400–1200 °C , 2012 .

[54]  F. Peeters,et al.  Electronic properties of graphene nano-flakes: energy gap, permanent dipole, termination effect, and Raman spectroscopy. , 2014, The Journal of chemical physics.

[55]  K. Morokuma,et al.  QM/MD studies on graphene growth from small islands on the Ni(111) surface. , 2016, Nanoscale.

[56]  Conversion of self-assembled monolayers into nanocrystalline graphene: structure and electric transport. , 2011, ACS nano.

[57]  Patrick R. Briddon,et al.  Structure and energetics of the vacancy in graphite , 2003 .

[58]  M. Bezpalko,et al.  Ostwald Ripening in Metallic Nanoparticles: Stochastic Kinetics , 2011 .

[59]  Y. Ghasemi,et al.  Biomimetic synthesis of silver nanoparticles using microalgal secretory carbohydrates as a novel anticancer and antimicrobial , 2016 .