An equational notion of lifting monad
暂无分享,去创建一个
[1] Daniele Turi,et al. Axiomatic domain theory in categories of partial maps , 1998 .
[2] Carsten Führmann,et al. Direct Models for the Computational Lambda Calculus , 1999, MFPS.
[3] Edmund Robinson,et al. Categories of Partial Maps , 1988, Inf. Comput..
[4] B. CockettJ.R.,et al. Restriction categories I , 2002 .
[5] Paul Taylor,et al. Abstract Stone Duality , 2003 .
[6] Marcelo P. Fiore. Axiomatic domain theory in categories of partial maps , 1994 .
[7] S. Lane. Categories for the Working Mathematician , 1971 .
[8] Gordon D. Plotkin,et al. Complete axioms for categorical fixed-point operators , 2000, Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332).
[9] Eugenio Moggi,et al. Computational lambda-calculus and monads , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.
[10] M. Barr,et al. Toposes, Triples and Theories , 1984 .
[11] Gordon D. Plotkin,et al. Complete cuboidal sets in axiomatic domain theory , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.
[12] E. Moggi. The partial lambda calculus , 1988 .
[13] J. Robin B. Cockett,et al. Restriction categories II: partial map classification , 2003, Theor. Comput. Sci..
[14] G. Winskel. The formal semantics of programming languages , 1993 .
[15] Eugenio Moggi,et al. Notions of Computation and Monads , 1991, Inf. Comput..
[16] J. Robin B. Cockett,et al. Restriction categories I: categories of partial maps , 2002, Theor. Comput. Sci..
[17] Glynn Winskel,et al. The formal semantics of programming languages - an introduction , 1993, Foundation of computing series.
[18] J. Hyland. First steps in synthetic domain theory , 1991 .
[19] Bart Jacobs,et al. Semantics of Weakening and Contraction , 1994, Ann. Pure Appl. Log..
[20] A. Kock. Strong functors and monoidal monads , 1972 .
[21] Philip S. Mulry. Generalized Banach-Mazur functionals in the topos of recursive sets , 1982 .